

Ms. Jo Anna Cunningham
Air Permitting Division
Bureau of Air Quality
South Carolina Department of Health & Environmental Control
2600 Bull Street
Columbia, South Carolina

Re: Update to Application for Construction Permit Modification Enviva Pellets Greenwood, LLC Greenwood County, South Carolina Construction Permit Number 1240-0133-CBr2

Dear Ms. Cunningham:

Enclosed please find an updated South Carolina Department of Health and Environmental Control (SC DHEC) permit application package for a permit modification to incorporate proposed facility changes at the Enviva Pellets Greenwood, LLC (Enviva) facility located in Greenwood County (referred to herein as "the Greenwood plant" or "the facility"). As requested Enviva is updating information provided in the application submitted in February 2020. Specifically, Enviva is updating the application to reflect the following minor changes:

- Increase in the amount of diesel assumed to quantify fuel combustion emissions during Furnace (E11) cold start-ups from 10 gallons per start-up and 50 gallons per year to 30 gallons per start-up and 200 gallons per year;
- Reduction in the allowable duration of cold start-ups from 12 hours per event to 8 hours per event;
- Additional discussion of potential emissions previously quantified by Colombo Energy Inc. (Colombo), the previous owner of the facility, and emissions quantified by Enviva;
- Quantification of particulate matter emissions from the Chipper (E2); and
- Removal of the Dry Hammermill modification option designated as "Option 1"
 in the February 2020 application (i.e., combination of existing horizontal and
 new vertical Dry Hammermills) to retain only "Option 2" (i.e., only new
 vertical Dry Hammermills).

The updates described above result in insignificant changes to the emission rates modeled as part of the February 2020 application. Specifically, the above discussed changes to furnace cold start-up bypass emissions (decrease in hours vented and increase in diesel usage) have an overall reduction in modeled emissions for PM_{10} and $PM_{2.5}$ and negligible increases for CO, NO_X , and SO_2 (0.1 lb/hr, 0.40 lb/hr, and 0.004 lb/hr, respectively). Furthermore, the Chipper

Date June 29, 2020

Ramboll 8235 YMCA Plaza Drive Suite 300 Baton Rouge, LA 70810 USA

T +1 225-408-2691 www.ramboll.com

emissions are below the modeling exemption thresholds and do not require modeling. Therefore, additional air dispersion modeling was not conducted as part of these updates.

As required, two (2) complete permit application packages, including one package with original signatures, and one complete electronic copy are enclosed.

Thank you for your prompt attention to this matter. If you have any questions, please contact me at (225) 408-2691 or Kai Simonsen, Senior Environmental Engineer and Manager at Enviva, at (919) 428-0289.

Sincerely,

Michael Carbon
Managing Principal

Managing Principal

D 225-408-2691 M 225-907-3822 mcarbon@ramboll.com

Enclosures: Permit Application including Appendices

Cc: Yana Kravtsova (Enviva) Kai Simonsen (Enviva) Stephen Stroud (Enviva)

JUL O : JZO

Application for Construction Permit Modification Greenwood County, South Carolina

CONTENTS

BUREAU OF AIR QUALITY

1.	INTRODUCTION	1
2.	PROCESS DESCRIPTION	3
2.1	Debarking, Chipping, Screening, Pile Drop, Pile Erosion, and Truck Dumps (E1 through E5, E46, E47)	3
2.2	Green Hammermills 1 through 5 (E6 through E9, E58) and Green Chip Silo (E10)	3
2.3	Dryer Furnace, Dryer, Dryer Duct Burner, and Dry Chip Silo (E11 through E13, E48)	4
2.4	Dry Hammermills (E59 – E94)	5
2.5	Pelletizer Feed Silo (E19)	6
2.6	Pelletizers 1 through 15 and new Pelletizers 16 through 18, Pellet Coolers 1 through 5 and new Pellet Cooler 6 (E20 through E39, E49 through E52)	6
2.7	Pellet Silos (E40 and E41) and Loadout (E42)	6
2.8	Dust Silos (E43)	6
2.9	Engine 1 (Emergency Generator), Engine 2 (Fire Pump) (E44, E45), and Diesel Storage Tanks (E53 – E55)	7
3.	POTENTIAL EMISSIONS QUANTIFICATION	8
3.1	Currently Permitted Emission Rates	8
3.2	Pile Drop, Pile Erosion, and Truck Dumps (E4, E5, E46, E47)	9
3.3	Debarker (E1)	10
3.4	Chipper (E2)	10
3.5	Green Wood Screener (E3)	11
3.6	Dryer (E11, E12), Green Hammermills (E6 - E9, E58), and Green Chip Silo (E10)	11
3.7	Dry Hammermills (E59 – E94)	12
3.8	Dry Chip Silo (E13) and Pelletizer Feed Silo (E19)	13
3.9	Pelletizers and Pellet Coolers (E20 - E39, E49 - E52)	13
3.10	Pellet Silos 1 and 2 (E40 and E41) and Dust Silo (E43)	14
3.11	Pellet Loadout (E42)	14
3.12	Emergency Generator (E44) and Fire Pump Engine (E45)	14
3.13	Diesel Storage Tanks (E53 – E55)	15
3.14	Unpaved and Paved Roads (E56 and E57)	15
3.15	Dryer Duct Burner (E48)	16
	•	17
4.	STATE AND FEDERAL PERMITTING APPLICABILITY	17
4.1	Federal Permitting Programs	
4.2	State Permitting Programs	18
5.	REGULATORY APPLICABILITY	19
5.1	New Source Performance Standards	19
5.2	National Emission Standards for Hazardous Air Pollutants	19
5.3	Compliance Assurance Monitoring	21
5.4	Chemical Accident Prevention Provisions	21
5.5	South Carolina Administrative Code	21
6.	AIR QUALITY MODELING ANALYSES	24
6.1	State Requirements	24
6.2	Model Selection	27
6.3	Receptor Grid and Elevation Data	27
6.4	Meteorological Data	27

Ramboll

6.5	Modeled Sources and Release Parameters	28
6.6	GEP Stack Height Analysis	29
6.7	Building Downwash	30
6.8	MAAC Modeling Results	30
6.9	AAQS Modeling Results	30

LIST OF TABLES

Table 6-1:	Comparison to Standard No. 8 Air Toxic De Minimis Exemption Thresholds
Table 6-2:	SC Standard No. 2 AAQS Analyses Model Output and Meteorological Data File Options
Table 6-3:	Summary of Modeled Point Source Parameters
Table 6-4:	Summary of Modeled Volume Source Parameters
Table 6-5:	Comparison of Maximum Modeled Concentrations to the MAAC
Table 6-6:	Comparison of Maximum Modeled Concentrations to the AAQS

APPENDIX

Appendix	Δ	- Area	Man	and	Facilibe	Lavout
ADDELIGIA	м	- Alea	מסוייו	ariu	racility	Lavour

- Appendix B Process Flow Diagram
- Appendix C Potential Emissions Calculations
- Appendix D Permit Application Forms
- Appendix E Supporting Documentation for Modeling Analyses
- Appendix F Modeled Source Layout

ACRONYMS AND ABBREVIATIONS

AAQS Ambient Air Quality Standard

AP-42 Compilation of Air Pollutant Emission Factors

BMP Best Management Practice

CAA Clean Air Act

CAM Compliance Assurance Monitoring

CFR Code of Federal Regulations

CI Compression Ignition

CO Carbon Monoxide
CO₂ Carbon Dioxide

DHM Dry Hammermill

EPA US Environmental Protection Agency

FSC Forest Stewardship Council

GEP Good Engineering Practice

GHG Greenhouse gases
GHM Green Hammermill

HAP Hazardous Air Pollutant

hp horsepower

ICE Internal Combustion Engine

lb Pound

MAAC Maximum Allowable Ambient Concentrations

MACT Maximum Achievable Control Technology

MMBtu Million British thermal units

NAAQS National Ambient Air Quality Standards

NCASI National Council for Air and Stream Improvement

NC DAQ North Carolina Division of Air Quality

NED National Elevation Dataset

NESHAP National Emission Standards for Hazardous Air Pollutants

NNSR Nonattainment New Source Review

NO_x Nitrogen Oxides (NO + NO₂)

NSPS New Source Performance Standards

NSR New Source Review

ODT Oven Dried Short Tons

PEFC Programme for the Endorsement of Forest Certifications

PM Particulate Matter

PM_{2,5} Particulate Matter Less Than 2.5 Micrometers in Aerodynamic Diameter
PM₁₀ Particulate Matter Less Than 10 Micrometers in Aerodynamic Diameter

PSD Prevention of Significant Deterioration

PSEU Pollutant Specific Emission Unit

RICE Reciprocating Internal Combustion Engine

RCO Regenerative Catalytic Oxidizer

RMP Risk Management Plan

RTO Regenerative Thermal Oxidizer

SC DHEC South Carolina Department of Health and Environmental Control

SIP State Implementation Plan

SO₂ Sulfur Dioxide

SFI Sustainable Forestry Initiative

TAP Toxic Air Pollutant tpy tons per year

USGS U.S. Geological Survey

VOC Volatile Organic Compounds

WESP Wet Electrostatic Precipitator

1. INTRODUCTION

Enviva Pellets Greenwood, LLC (Enviva) owns and operates a wood pellet manufacturing plant (referred to herein as "the Greenwood plant" or "the facility") located in Greenwood County, South Carolina. The Greenwood plant currently operates under Construction Permit Number 1240-0133-CBr2, originally issued by the South Carolina Department of Health and Environmental Control (SC DHEC) on January 12, 2018 and last revised on October 2, 2018. The facility is currently permitted to produce up to 500,000 wet metric tons per year of wood pellets utilizing up to 90% softwood on a 12-month rolling basis, which is equivalent to approximately 521,000 oven-dried short tons (ODT). The Greenwood plant consists of the following processes: Log chipper, Debarker, Green Wood Screener, Green Hammermills (GHMs), Rotary Dryer, Dry Hammermills (DHMs), Pelletizers and Coolers, product loadout operations, and other ancillary activities.

The Greenwood plant is a major source with respect to the Title V permitting program because potential facility-wide emissions of one or more criteria pollutants are above the major source threshold of 100 tons per year (tpy). The facility is classified as an area source of hazardous air pollutants (HAP) because potential total HAP emissions and maximum individual HAP emissions are below the major source thresholds of 25 tpy total HAP and 10 tpy individual HAP. The facility is minor with respect to the New Source Review (NSR) permitting programs because criteria pollutant emissions are below the 250 tpy threshold.

Enviva is submitting this permit modification application to request planned changes for the Greenwood plant to increase pellet production rate and reduce emissions from the DHMs. These changes are being implemented to meet new customer production rate demands, and to incorporate emission reduction efforts to minimize emissions impacts associated with the production rate increase.

The following summarizes the proposed physical changes and changes in the method of operation associated with this production increase, and other changes requested in this application:

- Increase pellet production rate from 521,000 ODT per year;
- Increase woodyard throughput rate from 541,500 ODT per year to 876,000 ODT per year for the Debarker (E1) and 766,500 ODT per year for other woodyard operations;
- Increase the amount of softwood processed from a maximum of 90% to 100%;
- Add three (3) new pelletizers [Pelletizers 16 through 18 (E49 through 51)] and one
 (1) new pellet cooler [Pellet Cooler 6 (E52)], which will be controlled by one (1) new
 baghouse (CD-18c) and the existing Regenerative Thermal Oxidizer
 (RTO)/Regenerative Catalytic Oxidizer (RCO) RTO3/RCO2 (CD19);
- Update the number and firing rate capacity of the RTO1 (CD3) burners from one (1) burner at five million British thermal units per hour (MMBtu/hr) to four (4) burners at 8 MMBtu/hr per burner;
- Update the firing rate capacity of the RTO2/RCO1 (CD15) burner from 5 MMBtu/hr to 5.2 MMBtu/hr;

- Update the number and firing rate capacity of the RTO3/RCO2 (CD19) burners from one (1) burner at 5 MMBtu/hr to two (2) burners at 5.2 MMBtu/hr per burner;
- Add one (1) new GHM [Green Hammermill 5 (E58)] which will be controlled by the
 existing Wet Electrostatic Precipitator [WESP (CD2)] and RTO [RTO1 (CD3)];
- Add one (1) new truck dump [Truck Dump 2 (E47)] and revise the permit to include an existing truck dump [Truck Dump 1 (E46)];
- Add an electric powered radial log crane, which will only be used to move logs and, therefore, will not be a source of air emissions;
- Include the existing furnace bypass stack (S15) in the permit and quantify associated emissions [Furnace (E11)];
- Quantify emissions from the existing Dryer Duct Burner (E48);
- Add an air-to-air chiller to cool incoming air to the pellet coolers to improve product quality;
- Quantify fugitive emissions from vehicle traffic on unpaved and paved roads [Unpaved Roads (E56) and Paved Roads (E57)];
- Update the permit to reflect the as-built control configuration for the Dust Silo (E43) (i.e., one cyclofilter (CD23) instead of four);
- Make other updates to emissions calculation methodologies described in Section 3 to incorporate additional plant-specific test data, data from comparable Enviva facilities, and to be consistent with methodologies employed by Enviva for its other plants; and
- Replace the existing five (5) DHMs (E14 through E18) with thirty-six (36) new vertical DHMs (E59 through E94). Exhaust from the new vertical DHMs will be routed to either:
 - a new bin vent filter [Bin Vent Filter 3 (CD24)] followed by a safety water quench duct and then to the dryer furnace (E11) followed by the existing WESP (CD2) and RTO1 (CD3);
 - b) a safety water quench duct and then the existing WESP (CD2) followed by the existing RTO1 (CD3); or
 - c) a combination of the two options.

Incorporation of these changes will allow the facility to increase total production while remaining under the Prevention of Significant Deterioration (PSD) major source threshold of 250 tpy for all criteria pollutants and the major source thresholds for HAPs. The facility will, however, continue to be classified as a major source under the Title V program due to potential criteria pollutant emissions above the 100 tpy threshold.

A description of the process is provided in Section 2 and methodologies used to quantify potential emissions are summarized in Section 3. Section 4 describes the applicability of federal and state permitting programs. Section 5 includes a detailed applicability analysis of both federal and state regulations. Additionally, Section 6 discusses the ambient air quality impact analysis for the facility. The completed air permit application forms are included in Appendix D.

Introduction 2 Ramboll

2. PROCESS DESCRIPTION

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as lifecycle carbon dioxide (CO₂)/greenhouse gases (GHG), mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the Southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI), Programme for the Endorsement of Forest Certification (PEFC), and Sustainable Biomass Program (SBP). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. Enviva pays attention to: land use change, use and effectiveness of BMPs, wetlands, biodiversity, and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future. A detailed description of Enviva's Responsible Wood Supply Program can be found at: http://www.envivabiomass.com/sustainability/wood-sourcing/responsible-wood-supplyprogram/

The following sections provide a description of the process and proposed changes to the Greenwood plant. An area map and facility layout are provided in Appendix A and a process flow diagram is provided in Appendix B.

2.1 Debarking, Chipping, Screening, Pile Drop, Pile Erosion, and Truck Dumps (E1 through E5, E46, E47)

In the woodyard, logs are debarked by the electric-powered Debarker (E1) and then sent to the Chipper (E2) to chip the wood. Bark from the Debarker is stored in outdoor piles (E4 and E5) prior to being sent to the furnace. The chips from the chipper are stored in outdoor piles (E5) prior to further processing in the GHMs. Purchased chips received by an existing truck dump (E46) are sent through a Green Wood Screener (E3) and then transferred to the storage piles.

As noted above, Enviva is proposing to install an additional truck dump (E47) as part of the proposed project. Enviva is also proposing to increase the woodyard throughput rate from 541,500 ODT per year to 876,000 ODT per year for the Debarker (E1) and 766,500 ODT per year for other woodyard operations.

2.2 Green Hammermills 1 through 5 (E6 through E9, E58) and Green Chip Silo (E10)

Prior to drying, chips from the woodyard are processed in four (4) GHMs (E6 through E9). From the GHMs, chips are sent to the Green Chip Silo (E10). Emissions from the GHMs and Green Chip Silo are routed to the WESP (CD2) and RTO-1 (CD3) to control particulate matter (PM), volatile organic compound (VOC), HAP, and toxic air pollutant (TAP) emissions.

In this application, Enviva is requesting the installation of one (1) new GHM (E58). The new GHM would also be controlled by the WESP (CD2) and RTO-1 (CD3).

Process Description 3 Ramboll

2.3 Dryer Furnace, Dryer, Dryer Duct Burner, and Dry Chip Silo (E11 through E13, E48)

The rotary drum Dryer (E12) uses direct contact heat provided to the system via a 200 MMBtu/hr Furnace (E11) that uses bark and wood chips as fuel. Green wood is fed into the Dryer (E12) where the moisture content is reduced to the desired level and routed to a material recovery cyclone (CD1) in series with a WESP (CD2) and RTO (CD3) for PM, VOC, HAP, and TAP control. Dried chips are stored in the Dry Chip Silo (E13). Particulate emissions from the Dry Chip Silo are controlled by a bin vent [Bin Vent Filter 1 (CD4)].

As the flue gas exits the dryer and begins to cool, wood tar can condense and coat the inner walls of the dryer ducts creating a fire risk. To prevent condensation from occurring and thus reduce the fire risk, ductwork associated with the cyclone outlet is heated by an existing duct burner with a maximum heat input rating of 5 MMBtu/hr [Dryer Duct Burner (E48)]. The duct burner combusts natural gas and exhausts directly to atmosphere.

As noted above, with this application, Enviva proposes to update the number and firing rate capacity of the RTO1 (CD3) burners from one (1) burner at 5 MMBtu/hr to four (4) burners at 8 MMBtu/hr per burner.

2.3.1 Furnace and Dryer Bypass Stacks (E11, E12)

Bypass stacks for the furnace and rotary drum dryer are used as an inlet for makeup air or to exhaust hot gases during start-ups (for temperature control), shutdowns, and malfunctions.

Specifically, the furnace bypass stack will be used in the following situations:

- Cold Start-ups: The furnace bypass stack will be used when the furnace is started up from a cold shutdown until the secondary combustion zone temperature approaches 600 degrees Fahrenheit (° F). Diesel fuel may be used as an accelerant for cold start-ups. The amount of fuel used per event is typically 15 to 30 gallons and the annual usage is typically 100 to 200 gallons. Emissions resulting from diesel usage during cold start-ups are insignificant. The heat input rate of the furnace during this initial stage of the start-up is not expected to exceed 15% of the maximum heat input rate of the unit. Once the secondary combustion zone temperature reaches 600 °F, the unit's induced draft fan is started and, although the bypass stack remains open, it is no longer exhausting emissions from the furnace. Instead, the bypass stack remains open to allow ambient air to be pulled through the dryer and during this time emissions are routed to the control devices for the furnace and dryer. Once the secondary combustion zone temperature reaches approximately 900 °F, the furnace bypass stack is closed. Use of the furnace bypass stack for cold start-ups will not exceed 8 hours per start-up and 50 hours per year. Emissions from cold start-up operations are quantified and included in the facility-wide potential emissions presented in this permit application.
- Idle Mode: The purpose of operation in idle mode is to maintain the temperature of
 the fire brick lining the furnace, which may be damaged if it cools too rapidly.

 Operation in idle mode also significantly reduces the amount of time required to
 restart the dryer. During idle mode, the furnace may operate up to a maximum heat
 input of 12 MMBtu/hr. Note that the furnace emissions are only vented through the
 bypass stack in idle mode when the facility is either conducting maintenance and
 cleaning of the WESP and RTO, or during dryer system repairs including repairs to

raw material input and product discharge. During other periods of idle mode operation, fan speeds are lowered and emissions from the furnace continue to be routed to the control devices. Use of the furnace bypass stack in idle mode will not exceed 500 hours per year. Emissions from furnace idle mode operation are quantified and included in the facility-wide potential emissions presented in this permit application.

- Malfunction: The furnace itself can abort and open the bypass stack in the event of a
 malfunction. This may be caused by failsafe interlocks associated with the furnace or
 dryer and emissions control systems as well as utility supply systems (i.e.,
 electricity, compressed air, water/fire protection). As soon as the furnace aborts, it
 will automatically switch to idle mode (defined as operation up to a maximum heat
 input rate of 12 MMBtu/hr). The fuel feed will automatically stop, resulting in a rapid
 drop in heat input.
- Planned Shutdown: In the event of a planned shutdown, the furnace heat input will be decreased, and all remaining fuel will be moved through the system to prevent a fire. The remaining fuel will be combusted prior to opening the furnace bypass stack. The furnace bypass stack is not utilized until after the furnace achieves an idle state (12 MMBtu/hr or less) or the furnace is shut down completely. Until this time, emissions continue to be controlled by the WESP and RTO.

Conditions under which the dryer bypass stack will be used are as follows:

- Malfunction: The dryer system can abort due to power failure, equipment failure, or furnace abort. If the RTO goes offline because of an interlock failure, the dryer will immediately abort. This may occur if the dryer temperature is out of range or due to equipment or power failure. Dryer abort will also be triggered if a spark is detected.
- Planned Shutdown: During planned shutdowns, as the remaining fuel is combusted
 by the furnace, the chip input to the dryer is reduced. When only a small amount of
 chips remains, the dryer drum will be emptied. The dryer bypass stack will then be
 opened, and a purge air fan used to ensure no explosive build-up of flammable gas
 occurs in the drum. Emissions during this time will be negligible and are not
 quantified, as the furnace and dryer are no longer operating.

Malfunctions are infrequent, unpredictable, and minimized to the maximum extent possible. Furnace and dryer bypass stack malfunction emissions cannot reasonably be quantified and are not included in the facility-wide potential emissions.

2.4 Dry Hammermills (E59 – E94)

Dried materials from the dry chip silo (E13) are currently conveyed to the five (5) existing horizontal DHMs (E14 through E18) for further size reduction prior to pelletization. Reduced wood chips and dust are then routed to the pelletizer feed silo (E19). Each DHM is currently controlled by a cyclofilter (CD5 through CD9).

With this application, Enviva is proposing to replace the five (5) existing horizontal DHMs (E14 through E18) with thirty-six (36) new vertical DHMs (E59 through E94). Exhaust from the new DHMs would be routed to either:

a) new bin vent filter (CD24) followed by a safety water quench duct and then to the dryer furnace (E11) followed by the existing WESP (CD2) and RTO1 (CD3);

- a safety water quench duct and then to the existing WESP (CD2) followed by the existing RTO1 (CD3);
- c) a combination of the two options.

All exhaust ultimately exiting the DHMs would be controlled by WESP (CD2) and RTO-1 (CD3). Recovered dust collected from the bin vent filter would be transferred to the milled wood conveyor belt.

2.5 Pelletizer Feed Silo (E19)

Milled wood from the DHMs and smaller wood particles that bypass the DHMs are conveyed to the Pelletizer Feed Silo (E19) for storage prior to pelletization. Particulate emissions from the Pelletizer Feed Silo are controlled by a bin vent (CD10).

2.6 Pelletizers 1 through 15 and new Pelletizers 16 through 18, Pellet Coolers 1 through 5 and new Pellet Cooler 6 (E20 through E39, E49 through E52)

Dried processed wood is mechanically compacted through fifteen (15) presses in the Pelletizers (E20 - E22, E24 - E26, E28 - E30, E32 - E34, and E36 - E38). Formed pellets are discharged into one of five (5) Pellet Coolers (E23, E27, E31, E35, and E39). Chilled cooling air is passed through the pellets when needed during high ambient air temperature conditions. At this point, the pellets contain a small amount of wood fines, which are swept out with the cooling air and are recovered utilizing five (5) existing baghouses (CD14a-c and CD18a and b).

As part of this application, Enviva proposes to install three (3) new Pelletizers (E49 - E51), one (1) new Pellet Cooler (E52). Emissions from the new equipment will be controlled by a new baghouse (CD18c) and by the existing RTO3/RCO2 (CD19). In addition, Enviva proposes to update the firing rate capacity of the RTO2/RCO1 (CD15) burner from 5 MMBtu/hr to 5.2 MMBtu/hr, and update the number and firing rate capacity of the RTO-3/RCO-2 (CD19) from one (1) burner at 5 MMBtu/hr to two (2) burners at 5.2 MMBtu/hr per burner. Finally, as discussed previously Enviva is proposing to add an air-to-air chiller to cool incoming air to the pellet coolers to improve product quality.

2.7 Pellet Silos (E40 and E41) and Loadout (E42)

Final product is conveyed to two (2) Pellet Silos (E40 and E41) controlled by a single cyclofilter (CD20). Final product from the silos is fed to the rail loadout station (E42). Pellet loadout is accomplished by gravity feed of the pellets through four (4) product chutes. Rail Loadout (E42) emissions are controlled by a product recovery cyclone (CD21) and baghouse (CD22).

2.8 Dust Silos (E43)

Dust and fines are collected and reclaimed from the milling, pelletizing, and loadout processes and conveyed to one (1) Dust Silo (E43), where they are stored until they are transferred to the dry chip silo and reintroduced into the process. Dust and fines are conveyed to the Dust Silo from the following equipment:

- DHM cyclofilters (CD5 CD9);
- Wood fines that bypass the DHMs;
- Pelletizers [E20 E22, E24 E26, E28 E30, E32 E34, E36 E38, and E49 E51 (future)];

- · Pellet screens located under each pellet cooler;
- Pellet cooler baghouses (CD14a-c and CD18a-c); and
- Loadout cyclone (CD21).

With this application, Enviva is requesting that the permit be updated to reflect the as-built configuration of the Dust Silo (E43) emissions control. The dust silo is controlled by a single cyclofilter (CD23) rather than multiple filters.

2.9 Engine 1 (Emergency Generator), Engine 2 (Fire Pump) (E44, E45), and Diesel Storage Tanks (E53 – E55)

The facility has an 865-brake horsepower (bhp) diesel-fired emergency generator engine (E44) and a 305 hp diesel-fired fire pump engine (E45). Aside from maintenance and readiness testing, the generator and fire water pump engines are only utilized for emergency operations.

Diesel for the emergency generator is stored in a 660-gallon tank [AST-4 (E55)] and diesel for the fire pump engine is stored in a 359-gallon storage tank [AST-2 (E54)]. Diesel fuel for woodyard operations is stored in a 2,000-gallon tank [AST-1 (E53)].

Process Description 7 Ramboll

3. POTENTIAL EMISSIONS QUANTIFICATION

The following summarizes the data sources and calculation methodologies used in quantifying potential emissions from the Greenwood plant. Detailed potential emissions calculations are provided in Appendix C. Note that Enviva has quantified potential GHG emissions from all applicable emissions sources; however, GHG emissions are not discussed in detail below. As noted below, emissions have been updated to reflect recent stack testing at the Greenwood plant and other Enviva facilities. Please refer to the detailed emission calculations provided in Appendix C for GHG emission estimates.

3.1 Currently Permitted Emission Rates

The currently permitted emission rates for the Greenwood plant are largely based on previous applications submitted by Colombo Energy Inc. (Colombo), the previous owner of the facility. However, Colombo did not quantify emissions from all sources at the facility, which are now quantified by Enviva in this application. Specifically, emissions from the following sources were not previously quantified by Colombo:

- Furnace bypass during cold start-ups and idle mode, which result in additional emissions of PM, PM less than 10 microns in diameter (PM₁₀), PM less than 2.5 microns in diameter (PM_{2.5}), sulfur dioxide (SO₂), nitrogen oxides (NO_X), carbon monoxide (CO), VOC, and HAP;
- Natural gas-fired duct burner, which result in additional emissions of PM, PM₁₀, PM_{2.5}, SO₂, NO_x, CO, VOC, and HAP; and
- Vehicle travel on paved and unpaved roads, which result in additional emissions of PM, PM₁₀, and PM_{2.5}.

The following table provides a comparison of currently-permitted facility-wide potential emissions ("Emission Rates Prior to Construction (tons/year) Colombo Basis"), currently-permitted facility-wide potential emissions with previously unquantified sources added ("Emission Rates Prior to Construction (tons/year) Colombo Permitted Emissions Plus Existing Unpermitted Emissions"), and Enviva's proposed emission rates ("Emission Rates After Construction / Modification (tons/year) Enviva Basis").

Pollutants	Emission Rates Prior to Construction / Modification (tons/year) Colombo Basis			Emission Rates Prior to Construction / Modification (tons/year) Colombo Permitted Emissions Plus Existing Unpermitted Emissions			Emission Rates After Construction / Modification (tons/year) Enviva Basis		
	Uncontrol.	Control.	Limited	Uncontrol.	Control.	Limited	Uncontrol.	Control.	Limited
PM	13,948	151	148	14,289	281	174	12,684	283	168
PM10	13,948	151	148	14,109	253	157	9,667	206	103
PM2.5	11,958	132	128	12,047	215	131	9,102	179	89
SO ₂	22.5		27.1	27.1	22.6	27	27	22.1	
NO _x	249		292	292	252	158	166	125	
СО	249			361	361	253	173	216	100

Pollutants	Construct (1	on Rates Pric tion / Modifi tons/year) tombo Basis	ication	Colombo Pe	tes Prior to C lication (tons ermitted Emi npermitted I	s/year) ssions Plus	Emission Rates After Construction / Modification (tons/year) Enviva Basis		
	Uncontrol.	Control.	Limited	Uncontrol.	Control.	Limited	Uncontrol.	Control.	Limited
voc	2,906	305	247	2,909	308	247	2,491	138	120
Pb	0	0	0	5.10E-02	1.20E-02	3.34E-03	5.10E-02	1.20E-02	3.34E-03
Formaldehyde	17.2	1.60	1.33	18.0	2.41	1.35	91.39	5.67	4.40
Total HAP Emissions	52.1	5.10	4.22	57.9	10.9	4.38	416.35	29.18	22.40

In addition to quantifying emissions from the existing sources discussed above, with this application Enviva is making updates to emission calculation methodologies to incorporate proposed project changes, incorporate additional test data, and for consistency with methodologies employed by Enviva for its other plants. These additional updates are discussed further in the subsequent sections of this application.

3.2 Pile Drop, Pile Erosion, and Truck Dumps (E4, E5, E46, E47)

Fugitive PM emissions result from unloading purchased chips and bark from trucks and transfer of these materials to storage piles and the fuel storage bin via conveyors, as well as from erosion of, and volatilization from, storage piles. With this application, Enviva is updating the emissions calculation methodology for these sources relative to previous applications submitted by Colombo, the previous owner of the Greenwood plant. The updates were made to incorporate proposed changes and to be consistent with methodologies employed by Enviva for its other plants. Specifically, Colombo previously quantified pile drop emissions by calculating an AP-42-based pound per ton (lb/ton) factor and applying it to the facility-wide throughput. Pile erosion emissions were quantified by calculating an AP-42-based ton per acre per year emission factor and applying it to an assumed total pile area of 2 acres. Enviva is quantifying emissions from these sources based on more accurate AP-42 methodologies for each type of pile, with updated pile sizes, and each type of drop point.

Fugitive PM emissions from chip and bark transfer operations were calculated based on AP-42 Section 13.2.4, Aggregate Handling and Storage Piles. Emissions were only quantified for the final drop points (e.g., from conveyor to pile). Green wood and bark contain a high moisture content approaching 50 percent water by weight. Therefore, chip and bark transfer operations have insignificant PM emissions.

Particulate emission factors used to quantify emissions from storage pile wind erosion were calculated based on EPA's *Control of Open Fugitive Dust Sources*.¹ The number of days with rainfall greater than 0.01 inches was obtained from AP-42 Section 13.2.2, *Unpaved Roads*,² and the percentage of time that wind speed exceeds 12 miles per hour (mph) was determined based on the AERMOD-ready meteorological dataset for the Greenwood Airport

¹ USEPA Control of Open Fugitive Dust Sources: Final Report (EPA-450/3-88-008, 09/88).

² USEPA AP-42 Section 13.2.2, Unpaved Roads (11/06).

National Weather Service (KGRD) Station provided by SC DHEC. The mean silt content of 8.4% for unpaved roads at lumber mills from AP-42 Section 13.2.2 was conservatively applied in the absence of site-specific data. The exposed surface area of the piles was calculated based on worst-case pile dimensions.

VOC emissions from storage piles were quantified based on the exposed surface area of the pile and emission factors from the National Council for Air and Stream Improvement (NCASI). NCASI emission factors range from 1.6 to 3.6 pounds (Ib) VOC as carbon/acreday; however, emissions were conservatively based on the maximum emission factor.

The pile drop points, pile erosion, and truck dump sources are exempt from construction permitting requirements per SC Regulation 61-62.1, Section II.B.2.h as total uncontrolled potential emissions are less than 5 tpy each of PM, SO₂, NO_x, CO, and total uncontrolled VOC emissions are less than 1,000 lb/month.

3.3 Debarker (E1)

PM emissions occur as a result of log debarking and processing. With this application, Enviva is updating the emissions calculation methodology for this source relative to previous applications submitted by Colombo. The updates were made to incorporate data from recent measurements conducted by NCASI, which more accurately reflect emissions from debarking relative to the lb/ton emission factor used by Colombo and obtained from a 1978 EPA document entitled "Assessment of Fugitive Particulate Emission Factor for Industrial Processes" (the "1978 PM factor")..3

Potential emissions of PM, PM₁₀, and PM_{2.5} from debarking were quantified based on emissions measurements conducted by NCASI and PM_{2.5} and PM₁₀ fractions for fresh bark.⁴

3.4 Chipper (E2)

The chipping process generates VOC and methanol air emissions. With this application, Enviva is updating the emissions calculation methodology for this source relative to previous applications submitted by Colombo. The updates were made to be consistent with methodologies employed by Enviva for its other plants, including speciating PM_{10} and $PM_{2.5}$ emissions from PM emissions, and quantifying previously unaddressed emissions of VOC and HAP.

PM emissions were quantified based on the 1978 PM factor reduced by 60% to account for the enclosed nature of the operation. $PM_{2.5}$ emissions were conservatively assumed to be 50% of total PM emissions.

VOC and methanol emissions were quantified based on emission factors for log chipping from AP-42 Section 10.6.3, *Medium Density Fiberboard* and AP-42 Section 10.6.4, *Hardboard and Fiberboard*.⁵

The Chipper is exempt from construction permitting requirements per SC Regulation 61-62.1, Section II.B.2.h as total uncontrolled potential emissions are less than 5 tpy each of PM, SO₂, NO_x, CO, and total uncontrolled VOC emissions are less than 1,000 lb/month.

³ Table 2-47 from Assessment of Fugitive Particulate Emission Factor for Industrial Processes (EPA-450/3-78-107). September 1978.

⁴ NCASI. Untitled Draft White Paper. November 2019.

⁵ USEPA AP-42 Section 10.6.3, Medium Density Fiberboard (08/02).

3.5 Green Wood Screener (E3)

The green wood screening process results in emissions of PM. With this application, Enviva is updating the emissions calculation methodology for this source relative to previous applications submitted by Colombo. The updates were made to incorporate NCASI factors, which more accurately reflect emissions from screening relative to the 1978 PM factor used by Colombo to previously quantify emissions from this source.

Potential PM emissions from screening were quantified based on emission factors from NCASI Technical Bulletin No. 1020 for chip screening.⁶

The Green Wood Screener is exempt from construction permitting requirements per SC Regulation 61-62.1, Section II.B.2.h as total uncontrolled potential emissions are less than 5 tpy each of PM, SO_2 , NO_x , CO, and total uncontrolled VOC emissions are less than 1,000 lb/month.

3.6 Dryer (E11, E12), Green Hammermills (E6 - E9, E58), and Green Chip Silo (E10)

As described in Section 2, in addition to normal operation there are several other potential operating conditions for the Dryer line. Emissions for the different operating conditions were quantified as described in the following subsections. With this application, Enviva is updating the emissions calculation methodology for these sources relative to previous applications submitted by Colombo. The updates were made to incorporate additional plant-specific test data for CO, NO_X, PM, PM₁₀, PM_{2.5}, VOC, acetaldehyde, acrolein, formaldehyde, methanol, phenol, and propionaldehyde, and to apply Enviva's methodology for scaling VOC emissions to the proposed maximum softwood content of 100%. Furthermore, these updates include quantifying HAP emissions resulting from combustion of wood waste in the furnace and from combustion of natural gas in the RTO, and criteria and HAP emissions from bypass stacks during cold start-ups and idle mode operations, which were not previously quantified by Colombo.

3.6.1 Normal Operation

During normal operation, exhaust from the Furnace and Dryer (E11 and E12) are routed to a product recovery cyclone separator followed by a WESP and RTO for control of PM, VOC, HAP, and TAP. The GHMs (E6 – E9, E58) and the Green Chip Silo (E10) share the Dryer's existing WESP/RTO control system. Potential emissions of PM, PM_{10} , $PM_{2.5}$, CO, NO_x , and VOC are based on Greenwood stack testing data with included contingency factors. The VOC emissions factor was scaled up to account for the proposed increase in the amount of softwood processed from a maximum of 90% to a maximum of up to 100%. Potential emissions of SO_2 are based on AP-42 Section 1.6, Wood Residue Combustion in Boilers, 09/03.

HAP and TAP emissions were calculated based on emission factors from several data sources including stack testing data from the Greenwood plant and comparable Enviva facilities (with contingency factors), emission factors from AP-42 Section 1.6, Wood Residue Combustion in

Ramboll

National Council for Air and Stream Improvement, Inc. (NCASI). 2013. Compilation of criteria air pollutant emissions data for sources at pulp and paper mills including boilers – an update to Technical Bulletin No. 884. Technical Bulletin No. 1020. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc.

Boilers, and NC DAQ's Wood Waste Combustion Spreadsheet. HAP and TAP emissions from natural gas combustion by the RTO burners were calculated based on AP-42 Section 1.4, Natural Gas Combustion and USEPA's WebFIRE database.

3.6.2 Furnace Bypass (Cold Start-ups)

The furnace bypass stack may be used to exhaust emissions during cold start-ups for up to 8 hours per start-up and 50 hours per year, during which the furnace will be operating at a heat input rate of up to 15% of the maximum heat input rate of the unit. The amount of fuel used per event is typically 15 to 30 gallons and the annual usage is typically 100 to 200 gallons. Potential emissions of PM, CO, NO_x, SO₂, VOC, HAP, and TAP during cold start-ups were calculated based on emission factors from AP-42 Section 1.6, Wood Residue Combustion in Boilers. and Section 1.3, Fuel Oil Combustion. 11

3.6.3 Furnace Bypass (Idle Mode/Planned Shutdown)

The furnace may operate up to 500 hours per year in "idle mode", which is defined as operation up to a maximum heat input rate of 12 MMBtu/hr when the WESP and RTO are undergoing maintenance or cleaning or when the dryer system is being repaired. During this time, emissions may exhaust out of the furnace bypass stack. Potential emissions of PM, CO, NOx, SO2, VOC, HAP, and TAP were calculated based on emission factors from AP-42 Section 1.6, Wood Residue Combustion in Boilers.

3.7 Dry Hammermills (E59 - E94)

The DHMs generate PM, VOC, HAP, and TAP emissions during the process of reducing wood chips to the required size for pelletization. As described in Section 2, all exhaust from the DHMs will be routed to control devices to reduce these emissions as follows:

- PM emissions from the new DHMs (E59 E94) will be controlled by a new bin vent filter (CD24) and/or WESP (CD2); and
- VOC, HAP, and TAP emissions controlled by the RTO (CD3).

All exhaust from the DHMs will ultimately be controlled by WESP (CD2) and RTO-1 (CD3). With this application, Enviva is updating the emissions calculation methodology for these sources relative to previous applications submitted by Colombo. The updates were made to reflect the proposed changes, incorporate additional plant-specific test data as well as data from other Enviva plants for VOC, PM, PM₁₀, PM_{2.5}, acetaldehyde, acrolein, formaldehyde, methanol phenol, and propionaldehyde, and to apply Enviva's methodology for scaling VOC emissions to the proposed maximum softwood content of 100%.

DHM emissions were calculated based on stack testing data from the Greenwood plant, assumed control efficiencies, and typical emission factors developed for other facilities and include a contingency factor. The VOC emissions factor was scaled up to account for the

USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

NCDAQ Wood Waste Combustion Spreadsheet for a wood stoker boiler. Available online at: https://files.nc.gov/ncdeq/Air%20Quality/permits/files/WWC_rev_K_20170308.xlsx.

USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98). WebFIRE factors are referenced in the NCDAQ spreadsheet in footnote above.

¹⁰ USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

¹¹ USEPA AP-42 Section 1.3, Fuel Oil Combustion (05/10).

proposed increase in the amount of softwood processed from a maximum of 90% to a maximum of up to 100%.

Emissions of criteria pollutants, HAP, and TAP from natural gas combustion by the RTO burners were calculated based on AP-42 Section 1.4, *Natural Gas Combustion* and USEPA's WebFIRE database. 12

 NO_X and CO emissions resulting from thermal exidation of VOC in the exhaust were calculated using AP-42 Section 1.4, *Natural Gas Combustion*. and the maximum high heating value of the anticipated VOC constituents.

3.8 Dry Chip Silo (E13) and Pelletizer Feed Silo (E19)

The Dry Chip Silo (E13) and Pelletizer Feed Silo (E19) are each equipped with bin vent filters (CD4 and CD10, respectively) to control PM emissions associated with silo loading and unloading operations. With this application, Enviva is updating the VOC and HAP emissions calculation methodology for these sources relative to previous applications submitted by Colombo. Specifically, VOC and HAP emissions for these sources were previously assumed to equal emissions from the Green Hammermills and Green Chip Silo. Enviva's updates were made to incorporate plant-specific VOC test data for the Dry Chip Silo and Pelletizer Feed Silo, estimate HAP emissions based on NCASI factors, and to apply Enviva's methodology for scaling VOC emissions to the proposed maximum softwood content of 100%. PM emissions are calculated based on the exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. VOC emissions were estimated based on testing data from the Greenwood plant and include a contingency factor. HAP, and TAP emissions were calculated based on dry wood handling emission factors from the NCASI Wood Products Database...14

3.9 Pelletizers and Pellet Coolers (E20 - E39, E49 - E52)

Pelletizers and Pellet Cooler (E20 - E39 and E49 - E52) operations generate PM, VOC, HAP, and TAP emissions during the forming and cooling of wood pellets. The Pelletizers and Pellet Coolers will be equipped with five existing baghouses (CD14a-c and CD18a and b) and one new baghouse (CD18c) and routed to two existing RTO/RCOs (CD15 and CD19) for emission control. With this application, Enviva is updating the VOC, CO, NO_X, PM₁₀, PM_{2.5}, and HAP emissions calculation methodology for these sources relative to previous applications submitted by Colombo. Specifically, the updates were made to:

- · Reflect the proposed project changes;
- Incorporate additional plant-specific test data as well as data from other Enviva plants for VOC, CO, NO_x, PM_{2.5}, acetaldehyde, acrolein, formaldehyde, methanol, phenol, and propionaldehyde;
- Incorporate PM₁₀ speciation data from comparable Enviva facilities;
- Apply Enviva's methodology for scaling VOC emissions to the proposed maximum softwood content of 100%; and
- Quantify HAP emissions resulting from combustion of natural gas in the RTO/RCOs.

¹² USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹³ Ibid.

NCASI VOC Dry Wood handling factor based on oriented-strand board operations.

Emissions of PM from the Pelletizers and Pellet Coolers were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate of the baghouses. Emissions of PM_{10} were calculated based on PM emissions and speciation based on data from a similar Enviva facility. Emissions of $PM_{2.5}$ were quantified based on stack testing data from the Greenwood plant and include a contingency factor.

Emissions of VOC, HAP, TAP, CO and NO_x from the Pelletizers and Pellet Coolers were quantified based on stack testing data from the Greenwood plant and comparable Enviva facilities and include a contingency factor. The VOC emissions factor was scaled up to account for the proposed increase in the amount of softwood processed from a maximum of 90% to a maximum of up to 100%. Note that emissions of CO and NO_x result only from combustion of fuel in the oxidizers. The pelletization process does not generate emissions of these pollutants. Emissions of SO₂, PM, HAP, and TAP from natural gas combustion by the RTO burner were calculated based on AP-42 Section 1.4, *Natural Gas Combustion* and USEPA's WebFIRE database...¹⁵

3.10 Pellet Silos 1 and 2 (E40 and E41) and Dust Silo (E43)

The Pellet Silos (E40 and E41) are controlled by Cyclofilter 6 (CD20) and the Dust Silo (E43) is controlled by Cyclofilter 7 (CD23). PM emissions are calculated based on the exit grain loading rate and the maximum nominal exhaust flow rate of the baghouses. Although emission calculation methodologies are not changing with this application relative to previous applications submitted by Colombo, Enviva's emission rates reflect the as-built control configuration for the Dust Silo (E43) (i.e., only one cyclofilter serves this silo instead of four).

Emissions of VOC from the Pelletizer Feed Silo (E19), which receives milled wood after it has been dried and processed by the DHMs, are estimated at only 0.02 pounds per hour. By the time the pellets are transferred from the pellet coolers to the pellet storage silos and dust and wood fines are transferred to the dust silo, this material has already cooled substantially and, therefore, VOC emissions from the Pellet Silos 1 and 2 (E40 and E41) and Dust Silo (E43) are negligible.

3.11 Pellet Loadout (E42)

PM emissions result from the transfer of finished product to the pellet loadout (E42). PM emissions from pellet loadout bins will be controlled by a baghouse (CD22) downstream of the product recovery cyclone (CD21). Pellet loadout is accomplished by gravity feed of the pellets through four (4) product hoppers equipped with sleeves with emissions controlled by the baghouse. Potential PM emissions from the baghouse were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Emissions of PM₁₀ and PM_{2.5} were conservatively assumed to equal PM emissions.

Similar to the Pellet Storage Silos (E40 and E41), by the time the pellets are being loaded out, this material has already cooled substantially and, therefore, VOC emissions from the Pellet Loadout (E42) are negligible.

3.12 Emergency Generator (E44) and Fire Pump Engine (E45)

Operation of the Emergency Generator and Fire Water Pump engines generates emissions of criteria pollutants, HAP, and TAP. Criteria pollutant emissions (except VOC and SO₂) were estimated based on factors from the technical data sheet for the Emergency Generator

USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

engine and emission standards in Table 4 of NSPS Subpart IIII for the Fire Water Pump engine. Potential SO₂ emissions were calculated based on the fuel sulfur restriction in NSPS Subpart IIII, and by assuming that all of the sulfur present in the diesel fuel is emitted as SO₂...¹⁶ Potential VOC, HAP, and TAP emissions were quantified based on emission factors from AP-42 Section 3.3, *Stationary Internal Combustion Engines*...¹⁷ Annual potential emissions were conservatively calculated based on 500 hours per year. With this application, Enviva is updating emissions estimates previously submitted by Colombo for the Firewater Pump Engine (E45) to use NSPS Subpart IIII limits applicable specifically to stationary fire pump engines rather than limits applicable to other types of emergency engines.

The Emergency Generator and Fire Water Pump engines are not impacted by the proposed project and are exempt from construction permitting requirements per SC Regulation 61.62.1, Section II.B.2.f.ii and Section II.B.2.h, respectively.

3.13 Diesel Storage Tanks (E53 – E55)

The storage of diesel in on-site Storage Tanks generates emissions of VOC. With this application, Enviva is providing estimates of these emissions, which were not quantified in previous applications submitted by Colombo. Emissions of VOC from the three (3) Diesel Storage Tanks were calculated using equations and inputs from AP-42 Section 7.1, *Organic Liquid Storage Tanks*... Emissions were based on actual tank characteristics (e.g., orientation, dimensions, etc.) and potential annual throughput.

The diesel storage tanks are exempt from construction permitting requirements per SC Regulation 61-62.1, Section II.B.2.h as total uncontrolled potential emissions are less than 5 tpy each of PM, SO₂, NO_x, CO, and total uncontrolled VOC emissions are less than 1,000 lb/month.

3.14 Unpaved and Paved Roads (E56 and E57)

Fugitive PM emissions occur as a result of trucks and employee vehicles traveling on Paved and Unpaved Roads on the Greenwood plant property. With this application, Enviva is providing estimates of these emissions, which were not quantified in previous applications submitted by Colombo. Emission factors for Unpaved Road emissions were calculated based on Equation 1a from AP-42 Section 13.2.2, *Unpaved Roads.*¹⁹ using a surface material silt content of 8.4% and 120 days with rainfall greater than 0.01 inches based on Figure 13.2.1-2. Emissions factors for Paved Road emissions were calculated based on Equation 2 from AP-42 Section 13.2.1, *Paved Roads.*²⁰ using a surface material silt content of 8.2% and 120 days with rainfall greater than 0.01 inch based on Figure 13.2.1-2. A 90% control efficiency was applied to Unpaved and Paved Road emissions for water/dust suppression activities. This control efficiency is based on data from the *Air Pollution Engineering Manual* of the Air and Waste Management Association.

²⁶ USEPA AP-42 Section 13.2.1, Paved Roads (01/11).

¹⁶ Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(b) as required by NSPS Subpart IIII.

¹⁷ USEPA AP-42 Section 3.3, Stationary Internal Combustion Engines (10/96).

¹⁸ USEPA AP-42 Section 7.1, Organic Liquid Storage Tanks (11/06).

¹⁹ USEPA AP-42 Section 13.2.2, Unpaved Roads (11/06).

3.15 Dryer Duct Burner (E48)

With this application, Enviva is providing estimates of emissions from the Dryer Duct Burner (E48), which were not quantified in previous applications submitted by Colombo. Emissions from natural gas combustion by the Dryer Duct Burner (E48) were calculated based on AP-42 Section 1.4, Natural Gas Combustion.²¹

The Duct Burner is exempt from construction permitting requirements per SC Regulation 61-62.1, Section II.B.2.h as total uncontrolled potential emissions are less than 5 tpy each of PM, SO_2 , NO_X , CO, and total uncontrolled VOC emissions are less than 1,000 lb/month.

²¹ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

4. STATE AND FEDERAL PERMITTING APPLICABILITY

The Enviva Greenwood plant is subject to federal and state air quality permitting requirements. The following sections summarize the applicability of federal and state permitting programs.

4.1 Federal Permitting Programs

The federal NSR permitting program includes requirements for construction of new major sources, and modifications to existing major sources, while the Title V Operating Permit Program includes requirements for operation of Title V major sources. The following sections discuss the applicability of these requirements to the Greenwood plant.

4.1.1 New Source Review

NSR is a federal pre-construction permitting program that applies to certain major stationary sources. The federal NSR permitting program is implemented in South Carolina pursuant to SC Regulation 61-62.5, Standard No. 7 and Standard No. 7.1. The primary purpose of NSR is to support the attainment and maintenance of ambient air quality standards across the country. There are two distinct permitting programs under NSR. The specific program that applies to a facility depends on the ambient air quality designation in the geographic area in which the source is located. The two programs are nonattainment NSR (NNSR) and PSD. Because NNSR and PSD requirements are pollutant-specific, a stationary source can be subject to NNSR requirements for one or more regulated NSR pollutants and to PSD requirements for the remaining regulated NSR pollutants.

NNSR permitting requirements apply to an existing stationary source located in an area where concentrations of a "criteria pollutant". exceed the National Ambient Air Quality Standard (NAAQS) for that pollutant. PSD permitting requirements apply to major stationary sources for each criteria pollutant for which the geographic area in which the source is located has been designated as unclassifiable or in attainment with the NAAQS. PSD permitting requirements may also apply to certain stationary sources regardless of location for each regulated NSR pollutant that is not a criteria pollutant (e.g., fluorides, hydrogen sulfide, and sulfuric acid mist).

The Greenwood plant is located in Greenwood County which is designated as attainment or unclassifiable for all criteria pollutants..²³ The Greenwood plant is classified as a PSD minor source because facility-wide potential emissions of each individual criteria pollutant are below the major source threshold of 250 tpy. As shown in the potential emissions calculations provided in **Appendix C**, following the proposed project, the facility-wide potential emissions will remain under the PSD major source threshold.

4.1.2 Title V Operating Permit Program

The Federal Title V Operating Permit program is codified in 40 CFR Part 70 and is implemented in South Carolina via SC Regulation 61-62.70. The Greenwood plant is a major source with respect to the Title V Operating Permit Program because facility-wide emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy. The facility is considered an area source of HAP due to total HAP emissions and maximum individual HAP

²² The following are "criteria pollutants" under current NSR regulations: CO, nitrogen dioxide, SO₂, PM₁₀, PM_{2.5}, ozone (VOCs and NOx), and lead.

^{23 40} CFR 81.341

emissions being below the major source thresholds of 25 tpy and 10 tpy, respectively. The proposed project will not change the facility's Title V or HAP source status.

4.2 State Permitting Programs

South Carolina's state construction permitting requirements are codified under SC Regulation 61-62.1, Section II. In accordance with SC Regulation 61-62.1, Section II.A.1.a., and unless otherwise exempt, facilities must obtain a permit prior to beginning construction of new or modified emissions units. The required application forms are included in Appendix D.

5. REGULATORY APPLICABILITY

The Greenwood plant is subject to federal and state air quality regulations. The following addresses all potentially applicable regulations.

5.1 New Source Performance Standards

New Source Performance Standards (NSPS) apply to new and modified sources and require sources to control emissions in accordance with standards set forth at 40 CFR Part 60. NSPS standards in 40 CFR Part 60 have been incorporated by reference in SC Regulation 61-62.60, Subpart A.

5.1.1 40 CFR 60 Subpart A - General Provisions

All sources subject to a NSPS are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Subpart A is applicable because the Emergency Generator and Fire Water Pump Engine are subject to NSPS Subpart IIII.

5.1.2 40 CFR 60 Subpart Db – Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Db applies to owners and operators of steam generating units for which construction, modification, or reconstruction commenced after June 19, 1984 and that have a maximum design heat input of greater than 100 MMBtu/hr. The Greenwood plant Furnace (E11) is not a steam generating unit; therefore, NSPS Subpart Db does not apply.

5.1.3 40 CFR 60 Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Dc applies to owners or operators of steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input of 100 MMBtu/hr or less but greater than or equal to 10 MMBtu/hr. The Greenwood plant Double Duct Burner has a maximum heat input of 5 MMBtu/hr and is not a steam generating unit; therefore, NSPS Subpart Dc does not apply.

5.1.4 40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

NSPS Subpart IIII applies to owners or operators of compression ignition (CI) internal combustion engines (ICE) manufactured after April 1, 2006 that are not fire pump engines, and fire pump engines manufactured after July 1, 2006. The existing 865 bhp emergency Generator and 305 hp Fire Pump engines at the Greenwood plant are subject to NSPS Subpart IIII and the proposed changes included in this application do not impact the applicability of NSPS Subpart IIII requirements for the engines.

5.2 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate HAP emissions and are applicable to certain major and area sources of HAP. NESHAP can be found in 40 CFR Part 63. NESHAP standards in 40 CFR Part 63 have been incorporated by reference in SC Regulation 61-62.63, Subpart A. As previously discussed, the Greenwood plant will remain a minor source of HAP due to facility-wide total HAP emissions being below 25 tpy and maximum individual HAP emissions below 10 tpy (refer to emissions calculations in Appendix C).

5.2.1 40 CFR 63 Subpart A – General Provisions

All sources subject to a NESHAP are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. The Emergency Generator and Fire Water Pump Engine are subject to Subpart ZZZZ of this part and thus, Subpart A is also applicable to these sources.

5.2.2 40 CFR 63 Subpart B - Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)

Section 112(g)(2)(B) of the Clean Air Act (CAA) requires that a new or reconstructed stationary source that does not belong to a regulated "source category" for which a NESHAP has been promulgated control emissions to levels that reflect "maximum achievable control technology" (MACT). As provided in §63.40(b), a case-by-case MACT evaluation is only required prior to the construction or reconstruction of a major source of HAP emissions. The Greenwood plant will not be subject to 112(g) since it is currently, and will remain, an area source of HAP emissions.

5.2.3 40 CFR 63 Subpart DDDD - NESHAP for Plywood and Composite Wood Products

Subpart DDDD regulates HAP emissions from plywood and composite wood products (PCWP) manufacturing facilities located at major sources of HAPs. The facility is not a major source of HAP emissions and, further, the wood pellets manufactured at the facility do not meet the definition of any of the PCWP products under §63.2292 that are subject to Subpart DDDD. Specifically, the wood pellets are not an engineered wood product, as they are not bound together with resin or other chemical agents. Therefore, this regulation is not applicable.

5.2.4 40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

Subpart ZZZZ applies to reciprocating internal combustion engines (RICE) located at a major or area source of HAP emissions. Emergency stationary RICE are defined in §63.6675 as any stationary RICE that operates in an emergency situation. These situations include engines used for power generation when a normal power source is interrupted, or when engines are used to pump water in the case of fire or flood. The Greenwood plant's emergency Generator and emergency Fire Water Pump are both classified as emergency RICE under Subpart ZZZZ. New or reconstructed CI engines located at an area source of HAP, such as the facility's Emergency Generator and Fire Water Pump engine, are only required to comply with the applicable provisions of NSPS Subpart IIII, per §63.6590(c)(1), and no further requirements apply under Subpart ZZZZ. The applicable requirements of this regulation have previously been incorporated into the facility's current permit and will not be impacted by the proposed permit changes.

5.2.5 40 CFR 63 Subpart DDDDD – NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

Subpart DDDDD, also referred to as the Boiler MACT, provides emission standards for boilers and process heaters located at major sources of HAP emissions. The facility is not a major source of HAP emissions. As such, Subpart DDDDD does not apply.

5.2.6 40 CFR 63 Subpart JJJJJJ - NESHAP for Area Sources: Industrial, Commercial, and Institutional Boilers

Subpart JJJJJJ provides emission standards for boilers located at area sources of HAP emissions. The rule defines a boiler in §63.11237 as an "enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water [...]." The facility does not currently operate any units that meet the Subpart JJJJJJ definition of a boiler and Enviva is not proposing to add boilers to the facility as part of the proposed project. Therefore, Subpart JJJJJJ is not applicable.

5.3 Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) under 40 CFR Part 64 applies to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit and whose pre-controlled emissions exceed the major source thresholds. A CAM plan is required to be submitted with the initial Title V operating permit application for emission units whose post-controlled emissions exceed the major source thresholds (i.e., large pollutant-specific emission units [PSEU]). For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V permit renewal application.

CAM will potentially be applicable to sources at the Greenwood plant. However, no emissions units have post-controlled emissions above major source thresholds and, therefore, any CAM plans that may be required will not be due until submittal of the facility's first Title V renewal application. Applicability of 40 CFR Part 64 requirements will be fully assessed at that time.

5.4 Chemical Accident Prevention Provisions

The Chemical Accident Prevention Provisions, codified in 40 CFR Part 68 and implemented in SC Regulation 61-62.68, provide requirements for the development of risk management plans (RMP) for regulated substances. Applicability of RMP requirements is based on the types and amounts of chemicals stored at a facility. No regulated substances under Subpart F of this rule will be stored at the Greenwood plant; therefore, an RMP is not required for the Greenwood plant.

5.5 South Carolina Administrative Code

In addition to federal regulations, SC Regulation 61-62 establishes regulations applicable at both the emission unit and facility level in South Carolina. The state regulations also include general requirements for facilities, such as the requirement to obtain construction and operating permits (discussed in Section 4.2 above). Source-specific standards in SC Regulation 61-62 that are potentially applicable to the facility as a result of this project are discussed in the following sections.

5.5.1 SC Regulation 61-62.5 Standard No. 1 Emissions from Fuel Burning Operations

This regulation establishes emissions standards for "fuel burning operations", which are defined as the "use of a furnace, boiler, device, or mechanism used principally, but not exclusively, to burn any fuel for the purpose of indirect heating in which the material being heated is not contacted by and adds no substance to the products of combustion." The facility's duct burner is used for indirect heating of exhaust gases and, therefore, is subject to this regulation and the following emission standards:

- Opacity may not exceed 20%;
- Emissions of PM may not exceed 0.6 lbs/MMBtu; and
- Emissions of SO₂ may not exceed 2.3 lb/MMBtu.

The duct burner is fired with pipeline quality natural gas and complies with the emission limitations above.

The facility's Furnace (E11) provides direct heating of the wood chips and, therefore, is not subject to this regulation.

5.5.2 SC Regulation 61-62.5 Standard No. 2 Ambient Air Quality Standards and SC Regulation 61-62.1, Section II.C.3.n. Modeling Analysis Requirement

Under this regulation, construction permit applications shall provide an air dispersion modeling analysis or other information to demonstrate that emissions from the facility will not interfere with the attainment or maintenance of any air quality standard under SC Regulation 61-62.5 Standard No. 2. The modeling analysis is discussed in detail in Section 6.

5.5.3 SC Regulation 61-62.5, Standard No. 3, Section III.I.1 Control of Visible Emissions for Industrial Incinerators

Under this regulation, visible emissions from industrial incinerators are limited to no more than 20% opacity. The Greenwood plant's existing thermal oxidizers demonstrate compliance with this opacity limit through weekly visual opacity observations.

5.5.4 SC Regulation 61-62.5, Standard No. 3, Section III.I.2 Control of PM Emissions for Industrial Incinerators

Under this regulation, PM emissions from industrial incinerators are limited to no more than 0.5 lb/MMBtu total heat input. The Greenwood plant's thermal oxidizers comply with this limit.

5.5.5 SC Regulation 61-62.5, Standard No. 4, Section VIII Control of PM Emissions

Under this regulation, PM emissions from all sources are limited to the rate specified in Table A of SC Regulation 61-62.5, Standard No. 4, Section VIII. For process weights greater than 5 tons per hour, the equations within this section must be used to determine the limit of PM emissions. All emissions from PM sources at the Greenwood plant will either be negligible or controlled by particulate matter control devices, and thus, will comply with this requirement. The emissions rates and corresponding process weight limits for the Greenwood plant are provided in Appendix C.

5.5.6 SC Regulation 61-62.5, Standard No. 4, Section IX Control of Visible Emissions (Where Not Specified Elsewhere)

Under this regulation, visible emissions from all sources are limited to no more than 20% opacity. This rule applies to all processes at the facility that may have visible emissions. The Greenwood plant complies with this rule by operating PM control devices and using best operating practices for uncontrolled sources at the facility.

5.5.7 SC Regulation 61-62.5, Standard No. 4, Section X Control of PM Emissions

Under this regulation, PM emissions from all non-enclosed operations are required to be minimized. This rule applies to all non-enclosed processes at the facility that may have PM

emissions. The Greenwood plant complies with this rule by using proper operating practices to minimize emissions from non-enclosed sources at the facility [i.e., Debarking, Chipping, Screening, Pile Drop, and Pile Erosion (E1 through E5)] and by limiting vehicle speed to minimize roadway fugitive dust emissions.

5.5.8 SC Regulation 61-62.5, Standard No. 5 Volatile Organic Compounds

This regulation establishes VOC emission standards for activities listed in Section II of the regulation. With the exception of fixed roof diesel storage tanks, the Greenwood plant does not maintain any of the regulated activities. Furthermore, this regulation applies only to petroleum liquid storage in fixed roof tanks with a capacity of 40,000 gallons or larger and, therefore, is not applicable to the Greenwood diesel tanks (Part O).

5.5.9 SC Regulation 61-62.5, Standard No. 5.2, Section III Control of NO_x Emissions

Under this regulation, NO_X emissions from the 200 MMBtu/hr furnace (E11) must comply with the limitations set forth in Table 1 of SC Regulation 61-62.5, Standard 5.2, Section III. The Greenwood plant complies with this regulation by using a modern furnace design that results in emissions of NO_X that are 30% lower relative to furnaces that do not employ this design, as documented in the vendor statement provided in the December 2017 permit application for the facility. In addition, and in accordance with current permit conditions, the Greenwood plant conducts tune-ups on the furnace every 24 months in accordance with manufacturer specifications or good engineering practices.

5.5.10 SC Regulation 61-62.5, Standard No. 8, Section II Toxic Air Emissions

Under this regulation, any person who constructs, alters, or adds to a source of TAP must demonstrate compliance with each toxic's maximum allowable 24-hour average concentration. This standard is applicable to all sources of TAP unless specifically exempt by the regulation or by SC DHEC's Modeling Guidelines for Air Quality Permits (October 2018, revised April 2019). There are several bases on which sources may be exempt from the requirement to demonstrate compliance with Standard No. 8, including:

- · Fuel burning sources which burn only virgin fuel or specification used oil; and
- Facility-wide emissions of a toxic is below the de minimis emission rate in lb/day.

The Greenwood plant conducted a modeling analysis in order to demonstrate compliance with Standard No. 8 for subject sources. The modeling analysis and results are discussed further in Section 6.

5.5.11 SC Regulation 61-62.6, Section III Control of PM Emissions Statewide

Under this regulation, fugitive PM emissions are required to be controlled in such a manner and to the degree that it does not create an undesirable level of air pollution. This rule applies to all fugitive sources at the facility that may have PM emissions. The Greenwood plant complies with this rule by conducting modeling analyses to indicate compliance with the PM NAAQS (see Section 6) and by using proper operating practices to minimize emissions from non-enclosed sources at the facility [i.e., Debarking, Chipping, Screening, Pile Drop, and Pile Erosion (E1 through E5)] and by limiting vehicle speed to minimize roadway fugitive dust emissions.

6. AIR QUALITY MODELING ANALYSES

As discussed previously, SC Regulations 61-62.5 Standard No. 2 establishes ambient air quality standards (AAQS) for South Carolina and SC Regulation 61-62.5 Standard No. 8 establishes Toxic Air Emissions requirements for new or modified sources. Pursuant to SC Regulation 61-62.1 Section II.C.3.n, SC Regulation 61-62.5 Standard No. 8, and the April 2019 South Carolina *Modeling Guidelines for Air Quality Permits* (SC Modeling Guidelines), air dispersion modeling must be conducted as part of a construction permit application to demonstrate compliance with the AAQS and maximum allowable ambient concentrations (MAAC) for TAP.

6.1 State Requirements

Dispersion modeling for TAP and criteria pollutant emissions was conducted consistent with the following state and federal guidance documents:

- South Carolina Modeling Guidelines for Air Quality Permits (Revised April 15, 2019);
- USEPA's Guideline on Air Quality Models 40 CFR 51, Appendix W (Revised, January 17, 2017), herein referred to as Appendix W; ²⁴ and
- USEPA's AERMOD Implementation Guide (Revised August 28, 2019).

In accordance with SC Modeling Guidelines, emission units with emissions of less than 5 tpy each of PM₁₀, PM_{2.5}, SO₂, NO_x, and CO are exempt from modeling requirements for those pollutants that are under the threshold. Additionally, modeling of lead emissions is required only if facility-wide lead emissions exceed the 0.5 tpy exemption threshold. Potential emissions of PM₁₀, PM_{2.5}, SO₂, NO_x, CO, and lead were compared to the exemption thresholds in Table 2.1 of the SC Modeling Guidelines to identify the source-pollutant combinations subject to modeling requirements. Additionally, facility-wide potential emissions for each Standard No. 8 TAP were compared to their respective de minimis threshold in Table B.1 of the SC Modeling Guidelines to determine which TAP were subject to modeling (see Table 6-1). Finally, additional exemptions specified in the SC Modeling Guidelines were determined to apply to certain Greenwood plant emission units. Specifically:

- The Duct Burner (E48) emissions are below the criteria pollutant exemption thresholds and therefore not subject to Standard No. 2 modeling. Furthermore, this unit only burns "virgin fuel" and therefore, is exempt from Standard No. 8 modeling.
- The Emergency Generator and Fire Pump Engines (E44, E45) are also exempt from Standard No. 2 and Standard No. 8 modeling requirements because of uncontrolled criteria pollutant emissions below exemption thresholds and the fact that they burn "virgin fuel" only.
- Storage Piles and Roadways (E4, E5, E56, E57) are exempt from Standard No. 2
 modeling requirements because the facility maintains a fugitive dust control plan.

²⁴ Appendix W was revised on December 17, 2016 (Federal Register Vol. 82, No. 10); however, on January 26, 2017 the effective date of the final rule was delayed until March 21, 2017 (Federal Register Vol. 82, No. 16). On March 20, 2017 the effective date of the final rule was further delayed to May 22, 2017 (Federal Register Vol. 82, No. 52), upon which it became effective.

 Other sources not specifically discussed above were exempt from modeling due to uncontrolled criteria pollutant emissions being below exemption thresholds or due to facility-wide TAP emissions being below the de minimis thresholds.

Table 6-1. Comparison to Standard No. 8 Air Toxic De Minimis Exemption Thresholds

Pollutant	Potential Emissions	De Minimis Threshold	Modeling Required?
	(lb/day)	(lb/day)	
Acetaldehyde	22.267	21.600	Yes
Acrolein	21.563	0.015	Yes
Formaldehyde	31.214	0.180	Yes
Methanol	20.852	15.720	Yes
Phenol	16.640	2.280	Yes
Propionaldehyde	8.043	+	No
Acetophenone	0.000	+	No
Antimony and compounds	0.011	0.030	No
Arsenic	0.030	0.012	Yes
Benzene	1.192	1.800	No
Beryllium	0.002	0.000	Yes
1,3-Butadiene	0.008	1.326	No
Cadmium	0.006	0.003	Yes
Carbon tetrachloride	0.056	1.800	No
Chlorine	4.588	0.900	Yes
Chlorobenzene	0.041	20.700	No
Chloroform	0.007	3.000	No
Chromium VI	0.002	0.030	No
Cobalt compounds	0.009	0.003	Yes
Dichlorobenzene	0.001	54.000	No
Dichloroethane, 1,2-	0.036	2.400	No
Dichloropropane, 1,2-	0.041	21.000	No
Dinitrophenol, 2,4-	0.000	+	No
Di(2-ethylhexyl)phthalate	0.000	0.300	No
Ethyl benzene	0.039	52.200	No
Hexane	0.872	10.800	No
Hydrochloric acid	28.272	2.100	Yes
Manganese	2.170	0.300	Yes
Mercury	0.005	0.003	Yes
Methyl bromide	0.019	1.200	No
Methyl chloride	0.029	6.180	No
Methylene chloride	0.070	105.000	No
Naphthalene	0.122	15.000	No
Nickel	0.046	0.006	Yes
Pentachlorophenol	0.000	0.060	No
Perchloroethylene	0.047	40.200	No
Phosphorus metal, yellow or white	0.037	0.006	Yes

Pollutant	Potential Emissions (lb/day)	De Minimis Threshold (lb/day)	Modeling Required?
Polychlorinated biphenyls	0.000	0.030	No
Polycyclic Organic Matter	0.189	1.920	No
Selenium compounds	0.004	0.012	No
Styrene	0.456	63.900	No
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	0.000	0.000	No
Toluene	0.091	24.000	No
Trichloroethane, 1,1,1-	0.039	114.600	No
Trichloroethylene	0.037	81.000	No
Trichlorophenol, 2,4,6-	0.000	+	No
Vinyl chloride	0.022	0.600	No
Xylene	0.062	52.200	No

The "+" symbol represents that a de minimis value is not determined by SC Guidelines; any level of emissions
qualifies as de minimis for this pollutant.

Based on the comparison with exemption thresholds and the eligibility of other modeling exemptions, Enviva identified the following sources and pollutants as being subject to modeling requirements:

- Emissions of PM₁₀, PM_{2.5}, SO₂, NO_x, CO, and TAP from RTO-1 (CD3) (Model ID RTO1), which includes the following sources:
 - GHMs (E6 E9, E58);
 - Green Chip Silo (E10);
 - Normal Dryer line operations (E11, E12); and
 - DHMs (E59 E94).
- Emissions of PM₁₀, PM_{2.5}, SO₂, NO_X, CO, and TAP from the Furnace Bypass Stack (E11) for idle mode (Model ID FBYP1_I) and cold start-up (Model ID FBYP1_F) operations.
- Dry Chip Silo (E13) emissions of TAP (model ID DCS);
- Pelletizer Feed Silo (E19) emissions of TAP (model ID PFS);
- Pelletizer and Pellet Cooler (E20 E39, E49 E52) emissions of PM₁₀, CO, and TAP (Model ID RTO2 and Model ID RTO3); and
- Electric Powered Chipper (E2) emissions of TAP (Model ID CHIP).

6.1.1 AAQS

Enviva conducted dispersion modeling to demonstrate compliance with the AAQS using the "Conservative Option" listed in Table A.1 of the SC Modeling Guidelines for each criteria pollutant and averaging period, with the exception of the NO₂ annual standard for which there is no conservative option provided in the SC Modeling Guidelines (see Table 6-2). For all pollutants (PM₁₀, PM_{2.5}, SO₂, NO₂, CO), the AAQS was compared to the "AERMOD Rank" for that specific pollutant over 5 separate years of modeling data plus the appropriate

background concentration obtained from SC DHEC's website.²⁵ The closest available background monitor was used for each pollutant. The selection of background concentration locations is consistent with previous modeling conducted for the facility.

Table 6-2. SC Standard No. 2 AAQS Analyses Model Output and Meteorological Data File Options

Pollutant	Averaging Time	AAQS (µg/m³)	AERMOD Rank	AERMOD Met File
PM ₁₀	24 Hour	150	2 nd High	5 Separate Years
	24 Hour	35	8 th High	5 Separate Years
PM _{2.5}	Annual	12	1 st High	5 Separate Years
	1 Hour	196	4 th High	5 Separate Years
\$O₂	3 Hour	1,300	1 st High	5 Separate Years
	1 Hour	188	8 th High	5 Separate Years
NO₂	Annual	100	1 st High	5 Separate Years
СО	1 Hour	40,000	1 st High	5 Separate Years
	8 Hour	10,000	1 st High	5 Separate Years

6.1.2 MAAC

Enviva conducted air dispersion modeling for fifteen TAPs with emissions in excess of the SC exemption thresholds. The maximum 24-hour concentration across five years of meteorological data was compared to the 24-hour average MAAC.

6.2 Model Selection

Enviva utilized the latest version of the AERMOD model (Version 19191). AERMOD is the EPA-approved air dispersion model for near-field (within 50 km) modeling analyses. AERMOD was run using default regulatory options.

6.3 Receptor Grid and Elevation Data

Consistent with the SC Modeling Guidelines, a resolution of 50 meters was used for receptors along the ambient boundary and a resolution of 100 meters was used for a Cartesian receptor grid extending approximately 1.5 km from the property line. Modeled concentrations were reviewed to ensure that the maximum concentration was captured for all pollutants and averaging periods within the 1.5 km grid.

Receptor, source, and building elevations were determined using the AERMAP terrain preprocessor (Version 18081). Hill height parameters required by AERMOD were also calculated by AERMAP. Elevations were based on 1/3 arc-second National Elevation Dataset (NED) from the U.S. Geological Survey (USGS). AERMAP input and output files, and a copy of the NED file are provided in Appendix E.

6.4 Meteorological Data

Enviva utilized AERMOD-ready meteorological data processed by SC DHEC for the Greenwood County Airport (KGRD) surface station (ID: 53874) and upper air data from the Greensboro Piedmont Triad International Airport (KGSO) National Weather Service (NWS) station (ID:

²⁵ BAQ_BackgroundDataforModeling_2019_23_04.xlsx. Available online at: https://scdhec.gov/environment/air-quality/air-dispersion-modeling-data

13723) for the period 2012-2016, consistent with SC DHEC's selection of the most representative meteorological station/data for each county in the state..²⁶ The selection of meteorological stations is also consistent with previous modeling conducted for the Greenwood plant in December 2017.

The meteorological data were processed by SC DHEC using version 18081 of AERMET and are based on 2012-2016 surface and upper air observations. SC DHEC provides the meteorological data processed with and without the ADJ U* option. Enviva has utilized the meteorological data processed using the ADJ U* option consistent with current SC DHEC and EPA modeling guidance. The base elevation for the Greenwood surface station was set to 192.3 m.²⁷ The meteorological data files are provided in Appendix E for reference.

6.5 Modeled Sources and Release Parameters

As previously described in Section 2, there are several different operating scenarios for the Greenwood plant dryer and furnace. Each operating scenario was modeled to assess compliance with the AAQS and MAAC. The following source groups were included to reflect the three operating modes:

- NORM1: All sources operating under normal conditions;
- BYPI: Dryer line in furnace bypass "idle mode" with all other sources operating under normal conditions; and
- BYPF: Dryer line in furnace bypass "cold start-up" will all other sources operating under normal conditions.

Tables 6-3 and 6-4 present a summary of the modeled sources and associated release parameters. Modeled emission rates are consistent with the maximum emission rates provided in the potential emissions calculations in Appendix C. For the Furnace (E11) Bypass Stack during cold start-up (Model ID FBYP1_F), the modeled short-term emission rates for $PM_{2.5}$ and PM_{10} are equal to the daily average emission rate and were conservatively determined assuming use of the furnace bypass stack for cold start-ups will not exceed 12 hours per start-up event. However, based on permit conditions, use of the furnace bypass stack will be limited to 8 hours per start-up event. Therefore, modeled emission rates for the furnace bypass stack are conservative and overestimate potential emissions emitted to the atmosphere. The modeled annual $PM_{2.5}$ emission rate is based on 50 hours of cold start-up per year.

A figure showing the modeled layout is provided in Appendix F.

6.5.1 Point Sources

Each modeled source with a defined vertical, unobstructed stack was represented as a POINT source and each source with a defined horizontal stack was represented as a POINTHOR source. None of the modeled stacks at the Greenwood plant have a rain cap. Modeled stack parameters for point sources are summarized in Table 6-3 below.

²⁶ https://scdhec.gov/environment/air-quality/air-dispersion-modeling-data

²⁷ https://scdhec.gov/sites/default/files/media/document/NWS-Meteorological-Data-Pairs-AERMOD-BAQ-2012-16.pdf

Table 6-3. Summary of Modeled Point Source Parameters

Model ID	Emission Point Description	Source Type	UTM Easting ¹ (m)	UTM Northing¹ (m)	Stack Height (m)	Exhaust Temperature (K)	Exit Veloc. (m/s)	Stack Diam. (m)
RTO1	RTO-1 (CD3)	POINT	401937.00	3788078.00	23.00	395.37	17.70	2.54
FBYP1_I	Furnace (E11) Bypass Stack "Idle Mode"	POINT	401883.00	3788057.00	24.31	560.93	0.70	1.83
FBYP1_F	Furnace (E11) Bypass Stack Cold Start- Up	POINT	401883.00	3788057.00	24.31	505.37	1.88	1.83
DCS	Dry Chip Silo (E13)	POINTHOR	401922.17	3788115.91	25.90	Ambient	13.35	0.30
PFS	Pelletizer Feed Silo (E19)	POINTHOR	402010.00	3788191.00	25.90	Ambient	13.35	0.30
RTO2	RTO2/RCO1 (CD15)	POINT	401976.00	3788211.00	34.30	400.00	16.01	1.37
RTO3	RTO3/RCO2 (CD19)	POINT	401992.00	3788227.00	34.30	400.00	16.01	1.37

^{1.} Coordinates reflect NAD83, UTM Zone 17.

6.5.2 Volume Sources

Fugitive TAP emissions associated with the chipper were modeled using a volume source. Initial lateral and vertical dimensions were determined in accordance with the AERMOD User's Guide..²⁸ Modeled volume source parameters are summarized in Table 6-4 below.

Table 6-4. Summary of Modeled Volume Source Parameters

Model ID	UTM Easting¹ (m)	UTM Northing¹ (m)	Release Height (m)	Initial Lateral Dimension (m)	Initial Vertical Dimension (m)
CHIP	401639.00	3787901.00	1.97	0.97	3.67

^{1.} Coordinates reflect NAD83, UTM Zone 17.

6.6 GEP Stack Height Analysis

EPA has promulgated regulations that limit the maximum stack height that may be used in a modeling analysis to no more than Good Engineering Practice (GEP) stack height. The purpose of this requirement is to prevent the use of excessively tall stacks to reduce the

²⁸ USEPA. User's Guide for the AMS/EPA Regulatory Model (AERMOD). EPA-454/B-19-027. August 2019.

modeled concentrations of a pollutant. GEP stack height is impacted by the heights of nearby structures. In general, the minimum value for GEP stack height is 65 meters. The stack heights for all sources at the Greenwood plant are less than 65 meters and were thus modeled using actual stack heights.

6.7 Building Downwash

The AERMOD model incorporates Plume Rise Modeling Enhancements (PRIME) to account for downwash. The direction-specific building downwash dimensions used as inputs were determined by the latest version (04274) of the Building Profile Input Program, PRIME (BPIP PRIME). Per USEPA instruction, the draft version of BPIP PRIME (19191_DRFT) was not used. BPIP PRIME uses building downwash algorithms incorporated into AERMOD to account for the plume dispersion effects of the aerodynamic wakes and eddies produced by buildings and structures. On-site structures at the Greenwood plant were evaluated for downwash effects on each modeled point source. BPIP input and output files are included in Appendix E.

6.8 MAAC Modeling Results

As shown in Table 6-5 below, modeled concentrations for each of the fifteen TAPs are below their respective MAAC. As such, the Greenwood plant will not cause an exceedance of the MAAC for any of the modeled TAP. Modeled concentrations are shown to two decimal places for comparison to the MAAC per SC Modeling Guidance. AERMOD input and output files are provided in Appendix E.

6.9 AAQS Modeling Results

As shown in Table 6-6 below, modeled concentrations for criteria pollutants are below the respective AAQS thresholds. Therefore, the Greenwood plant will not cause an exceedance of the AAQS. AERMOD input and output files are provided in Appendix E.

Table 6-5. Comparison of Maximum Modeled Concentrations to the MAAC

			E I	MI TO	Modeled		
Pollutant	Averaging	Source	Easting1	Northing ¹	Concentration	MAAC	Exceeds
	Period	Group	(m)	(m)	$(\mu g/m^3)^2$	(µg/m³)	MAAC?
		NORM1	401,963.81	3,788,362.21	0.54		No
Acetaldehyde	24-Hour	BYPI	402,034.65	3,788,430.88	0.28	1,800	No
		BYPF	402,034.65	3,788,430.88	0.29		No
		NORM1	401,999.23	3,788,396.55	0.56		No
Acrolein	24-Hour	BYPI	402,034.65	3,788,430.88	0.46	1.25	N _O
		BYPF	401,786.70	3,788,190.52	0.58		No
		NORM1	401,963.81	3,788,362.21	0.00	3	No
Arsenic	24-Hour	BYPI	401,786.70	3,788,190.52	0.00	1.00	No
		BYPF	401,786.70	3,788,190.52	0.00		No
		NORM1	401,963.81	3,788,362.21	0.00		No
Beryllium	24-Hour	BYPI	401,786.70	3,788,190.52	0.00	0.01	No
		BYPF	401,786.70	3,788,190.52	0.00		No
		NORM1	401,963.81	3,788,362.21	0.00		No
Cadmium	24-Hour	BYPI	401,786.70	3,788,190.52	0.00	0.25	No
		BYPF	401,786.70	3,788,190.52	0.00		No
		NORM1	401,963.81	3,788,362.21	0.07		No
Chlorine	24-Hour	BYPI	401,786.70	3,788,190.52	0.07	75.00	No
		BYPF	401,786.70	3,788,190.52	0.11		9 N
		NORM1	401,963.81	3,788,362.21	0.00		S
Cobalt	24-Hour	BYPI	401,786.70	3,788,190.52	0.00	0.25	No
		BYPF	401,786.70	3,788,190.52	0.00		S
		NORM1	401,999.23	3,788,396.55	1.34		No No
Formaldehyde	24-Hour	BYPI	401,999.23	3,788,396.55	1.32	15.00	No
		BYPF	401,999.23	3,788,396.55	1.39		S S
4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		NORM1	401,963.81	3,788,362.21	0.17		8
האמוסכוווסוור	24-Hour	BYPI	401,786.70	3,788,190.52	1.68	175.00	8
		BYPF	401,786.70	3,788,190.52	2.74	_	S _O
		NORM1	401,963.81	3,788,362.21	0.01		S
Manganese	24-Hour	BYPI	401,786.70	3,788,190.52	0.14	25.00	8
		BYPF	401,786.70	3,788,190.52	0.23		8

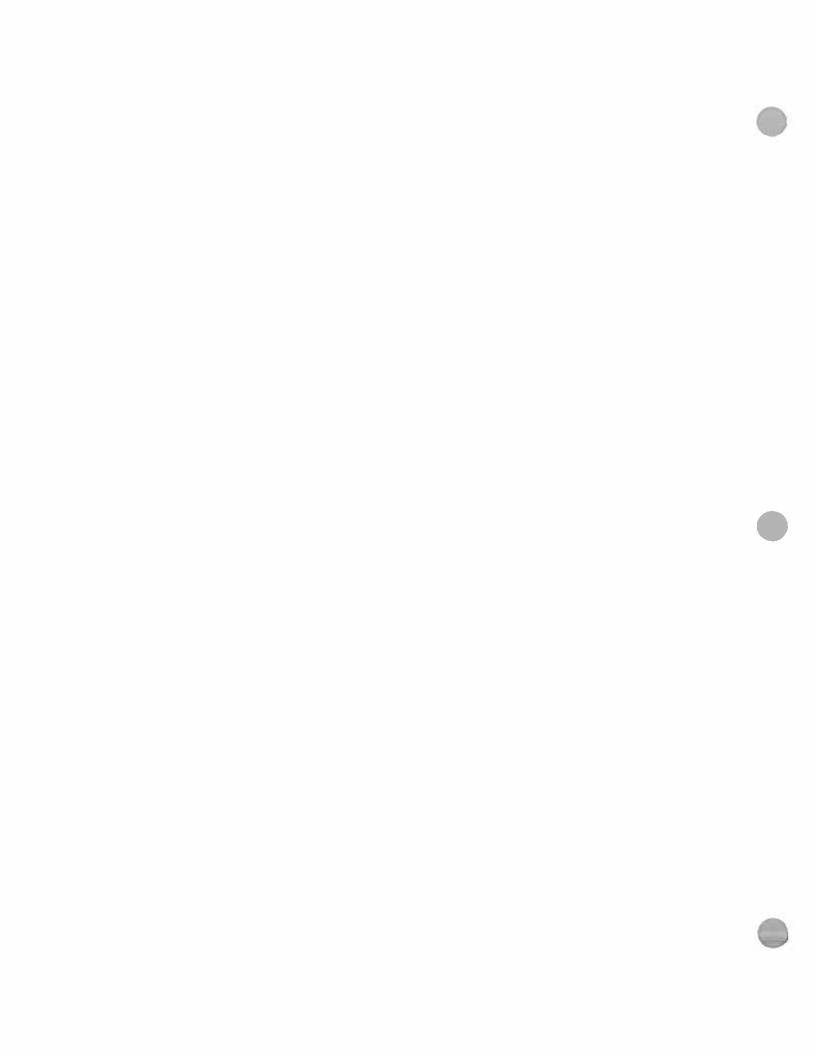
Air Quality Modeling Analyses

Pollutant	Averaging Period	Source	UTM Easting ¹ (m)	UTM Northing ¹ (m)	Modeled Concentration (µg/m³)²	MAAC (µg/m³)	Exceeds MAAC?
		NORM1	401,963.81	3,788,362.21	0.00		No
Mercury	24-Hour	BYPI	401,786.70	3,788,190.52	0.00	0.25	No
		BYPF	401,786.70	3,788,190.52	0.00		No
		NORM1	401,589.56	3,787,999.16	9.94		No
Methanol	24-Hour	BYPI	401,589.56	3,787,999.16	9.94	1,310	No
		BYPF	401,589.56	3,787,999.16	9.94		No
		NORM1	401,963.81	3,788,362.21	0.00		No
Nickel	24-Hour	BYPI	401,786.70	3,788,190.52	0.00	0.50	No
		BYPF	401,786.70	3,788,190.52	0.00		No
		NORM1	401,963.81	3,788,362.21	0.42		No
Phenol	24-Hour	BYPI	402,034.65	3,788,430.88	0.20	190.00	No
		ВУРЕ	402,034.65	3,788,430.88	0.20		No
		NORM1	401,963.81	3,788,362.21	0.00		No
Phosphorous	24-Hour	BYPI	401,786.70	3,788,190.52	0.00	0.50	No
		BYPF	401,786.70	3,788,190.52	0.00		No

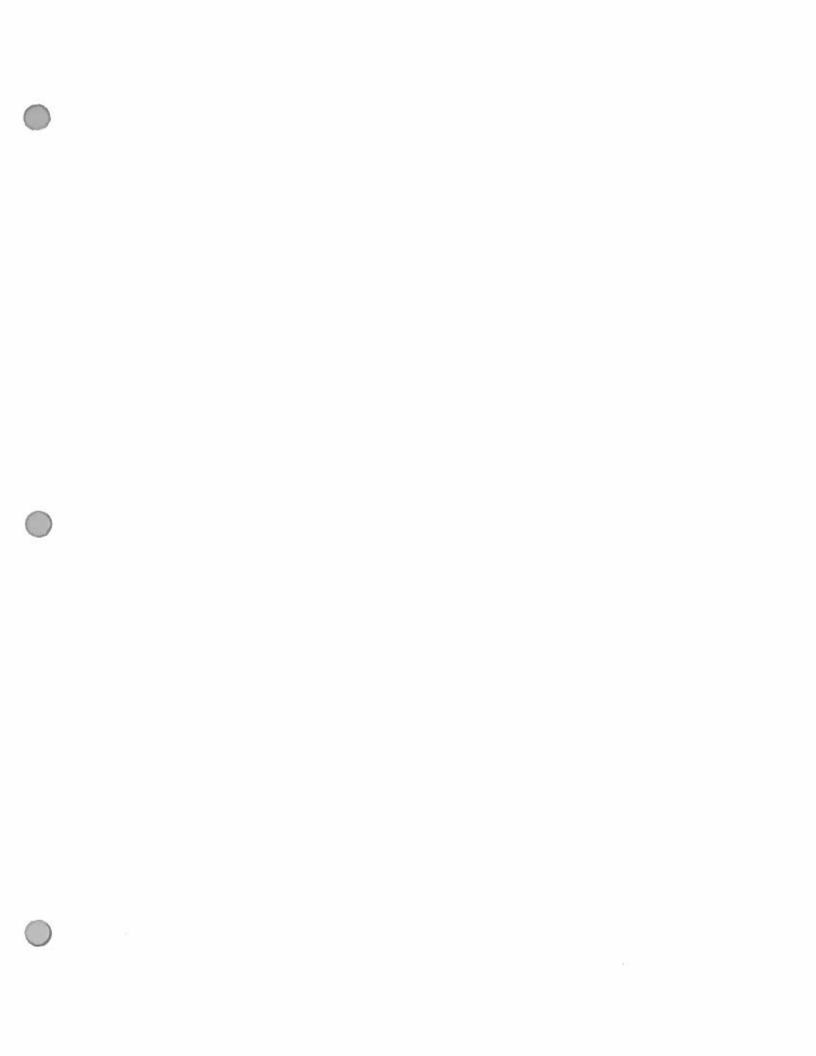
1. Coordinates reflect NAD83, UTM Zone 17.

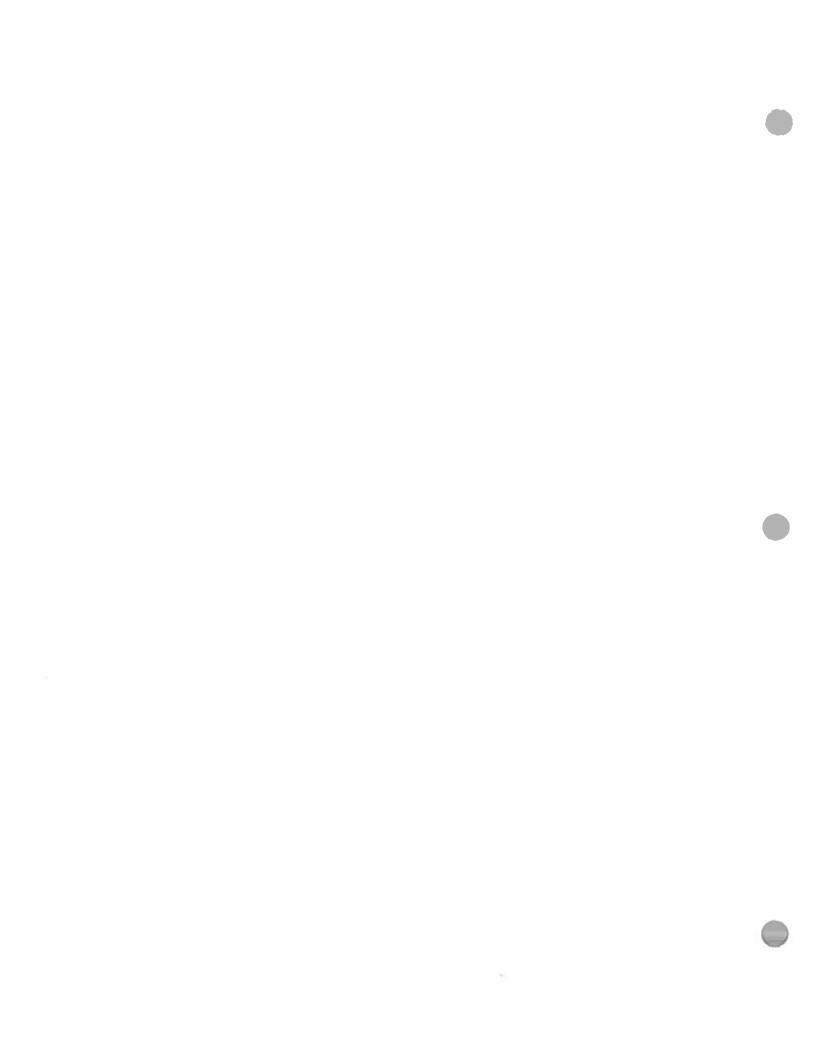
Ramboll

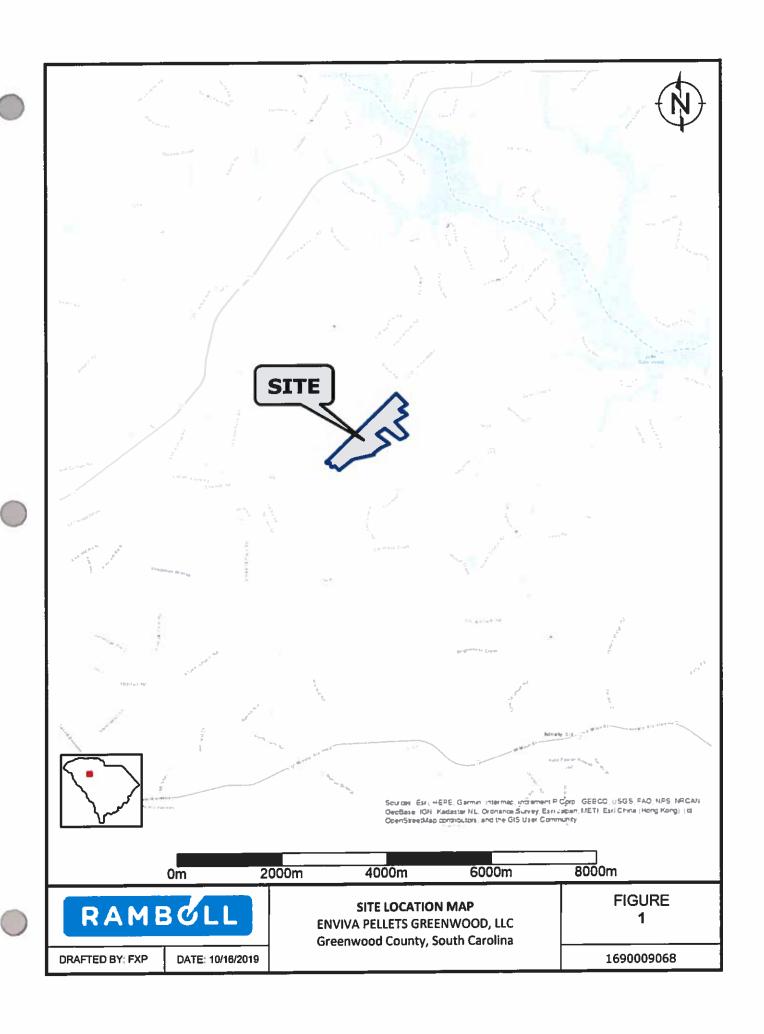
^{2.} Modeled concentrations are shown to two decimal places for comparison to the MAAC per SC Modeling Guidance. Concentrations for pollutants showing as 0.00 can be found in the individual AERMOD Output files.

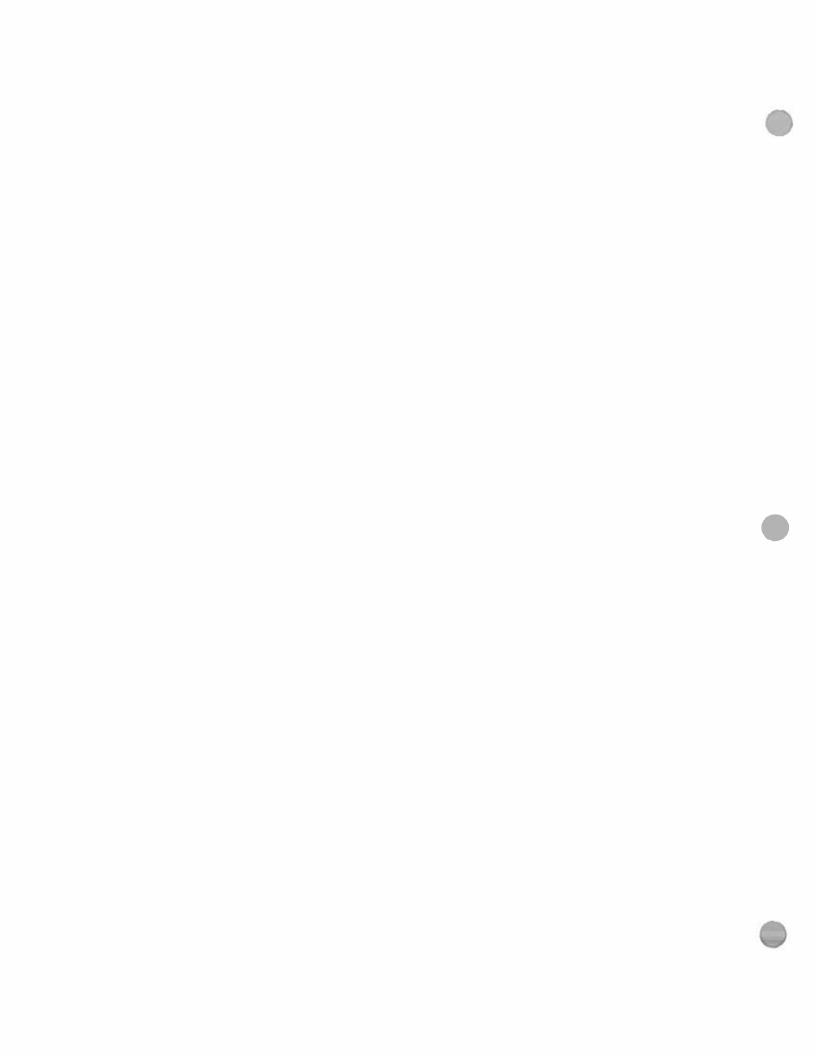

Table 6-6. Comparison of Modeled Concentrations to the AAQS

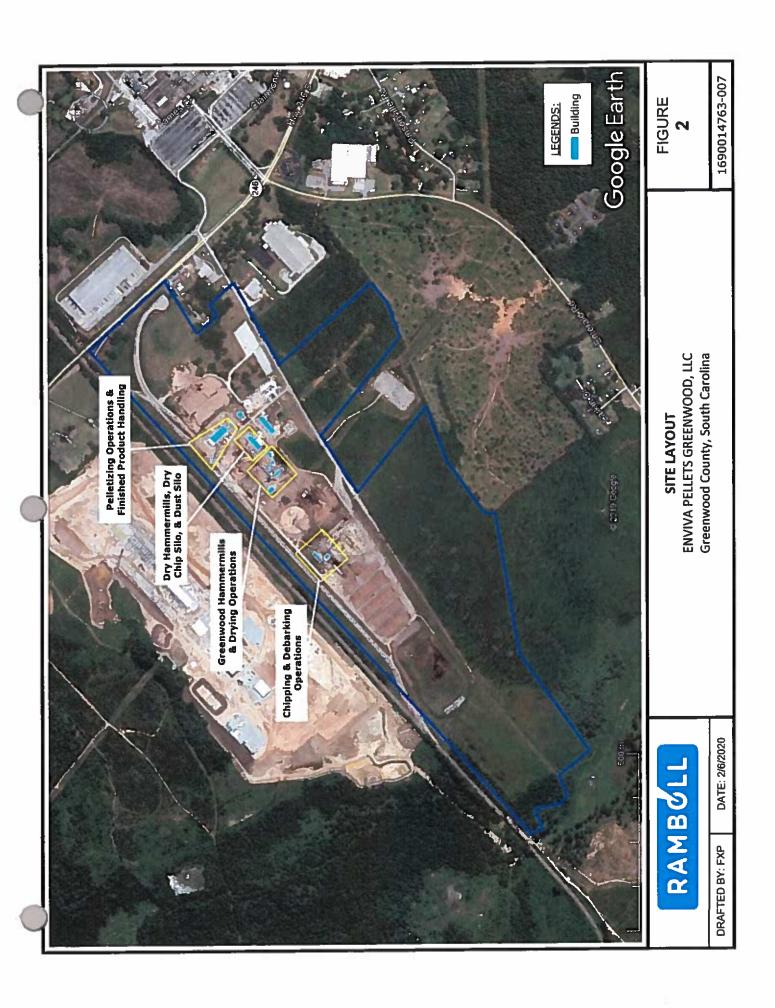
Averaging Period	Source	Easting ¹ (m)	UTM Northing ¹ (m)	Modeled Concentration (µg/m³)	Background Concentration (µg/m³)²	Total Concentration (µg/m³)	AA QS (µg/m³)	Exceeds AAQS?
	NORM1	402,034.65	3,788,430.88	6.5		99		S _O
24 Hour	BYPI	401,786.70		33.2	09	93	150	No
	BYPF	401,786.70	3,788,190.52	27.1		87		No
	NORM1	402,265.86	3,788,292.59	2.3		19		No
24 Hour	BYPI	401,822.12	3,788,224.86	16.0	16.4	32	35	N _O
	BYPF	401,822.12	3,788,224.86	13.0		29		No
	NORM1	402,269.28	\vdash	0.5		6		No
Annual	BYPI	402,265.86	3,788,292.59	2.5	8.3	11	12	No
	BYPF	402,265.86	3,788,292.59	0.0		8		No
	NORM1	401,963.81	3,788,362.21	6.4		14		N _O
1 Hour	BYPI	401,742.50	3,788,281.75	5.2	7.9	13	196	No
	ВУРГ	401,742.50	3,788,281.75	8.2		16		No
	NORM1	401,963.81	3,788,362.21	6.3		11		S
3 Hour	BYPI	401,742.50	3,788,181.75	4.7	4.5	6	1,300	8
	BYPF	401,742.50	3,788,181.75	6.4		11		No
	NORM1	401,999.23	3,788,396.55	19.2		86		S S
1 Hour	BYPI	401,742.50	3,788,281.75	37.7	79.0	117	188	No
	BYPF	401,742.50	3,788,281.75	63.6		143		S
	NORM1	402,269.28	3,788,288.63	9.0		15		8
Annual	BYPI	402,265.86	3,788,292.59	1.1	14.9	16	100	S
	BYPF	402,265.86	3,788,292.59	2.2		17		2
	NORM1	402,034.65	3,788,430.88	41.6		1,301	+	8
1 Hour	BYPI	401,742.50	3,788,281.75	134.6	1259.5	1,394	40,000	2
	BYPF	401,742.50	3,788,281.75	202.5		1,462		2
	NORM1	402,034.65	3,788,430.88	33.6		984		2
8 Hour	BYPI	401,786.70	3,788,190.52	70.0	950.4	1,020	10,000	2
	5	20, 700, 104	1004.00					-

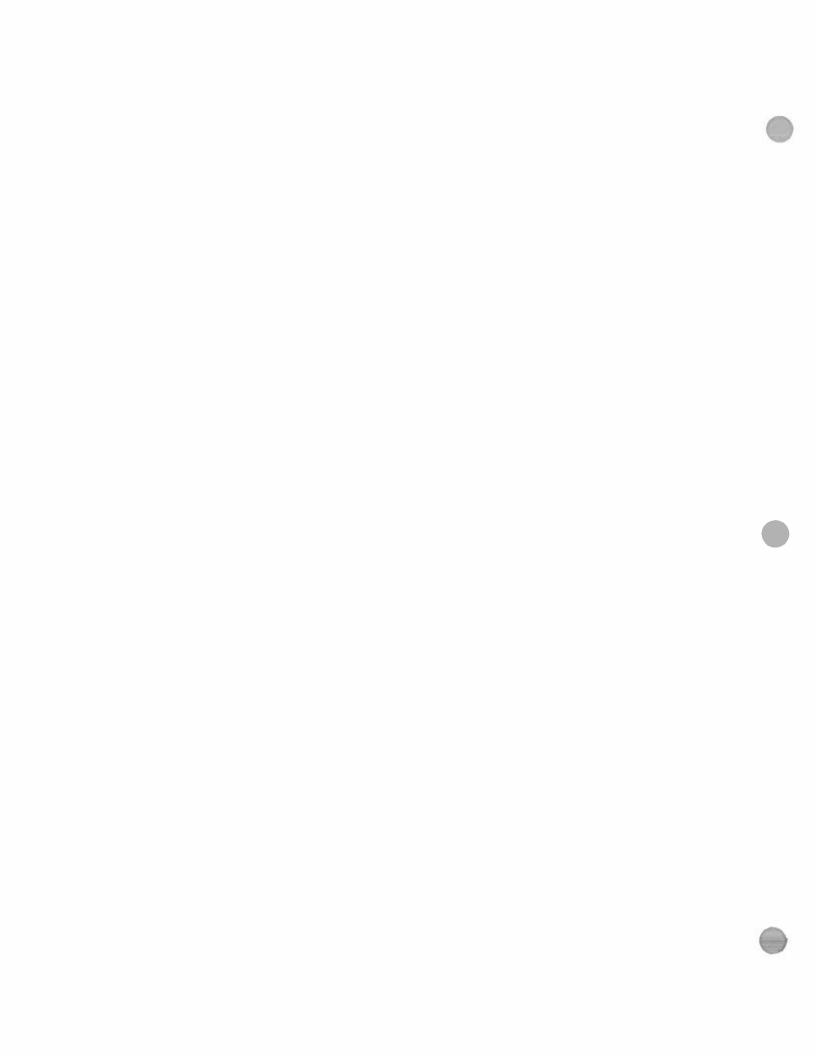

^{1.} Coordinates reflect NAD83, UTM Zone 17.

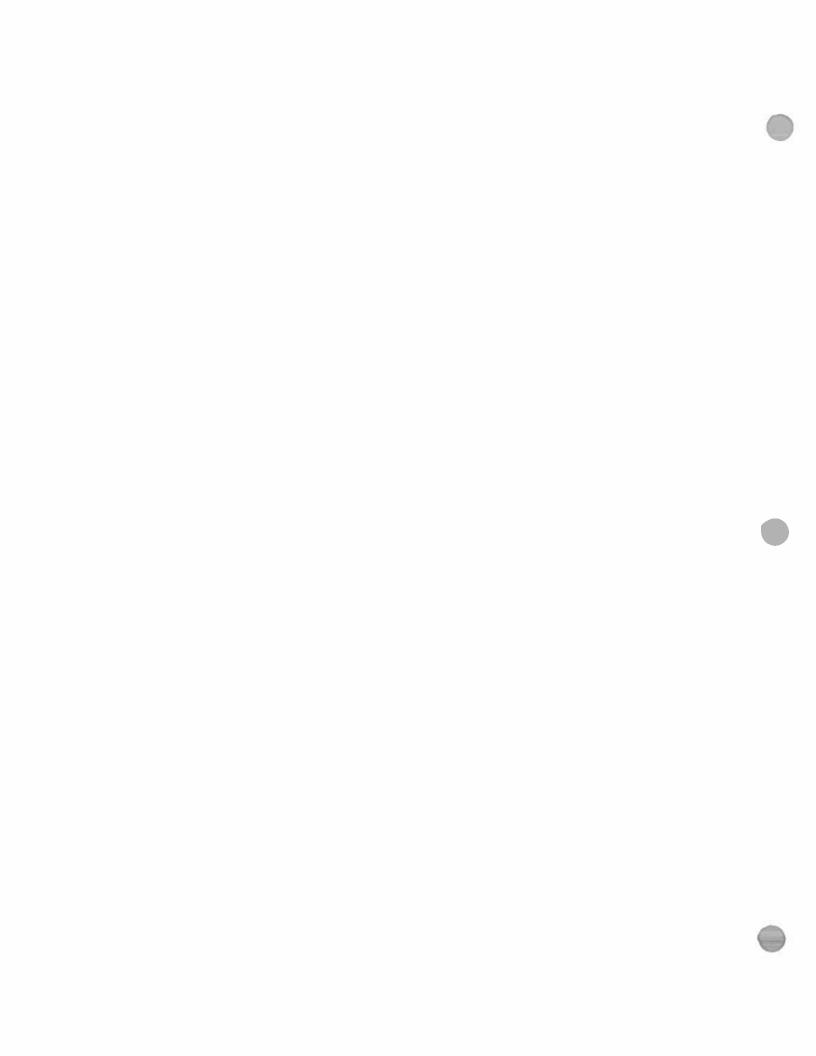

^{2.} Background concentration from closest county to Greenwood County, SC from SC DHEC's spreadsheet


[&]quot;BAQ_BackgroundDataforModeling_2019_23_04.xlsx".




APPENDIX A
AREA MAP AND FACILITY LAYOUT





APPENDIX B
PROCESS FLOW DIAGRAM

3 New & 6 Existing Pelletzers (E32 through E34, E36 through E39, E49 through E51) RAMBGLL 36 Vertical Dry Hammermills (E59 through E94) Pried Fibers (54 Bin Vent 2 (CD10) Quench Duct Dried Wood Fibers/Chips Pelletizer Feed Silo (E19) Dried Wood Fibers/Chips 9 Pellettzers (E20 through E22, E24 through E26, E28 through E30) Bin Vent 3 (CD24) Dried Wood Fibers/Chips Quench Duct 4 1 New & 2 Existing
Baphouses
(CD18a - c) Pellet Mil Waste (ES) 1 New & 2 Existing Pellet Coolers (E35, E39, E52) Bin Vent 1 (CD4) Dry Chip Silo (E13) \$15 3 Pellet Coolers (E23, E27, E31) Baghouses (CD14a -c) RT01 (003) RTO-3/RCO-2 (CD19) Chilled Alr RTO-2/RCO-1 (CD15) Dried Wood Fibers/ Chips Finished Wood Pellet Product 25 Appendix B - Process Flow Diagram
Enviva Pellets Greenwood, LLC - Greenwood County, SC
Option 2: All New Vertical DHM Scenario Furnace (E11) Dryer (E12) WESP (022) Cydone (CD1) 25 Back-up Power to Plant Operations Cyclofitter 6 (CD20) 2 Pellet Silos (E40 and E41) Back-up Power to Fire Water Pump Dryer Duct Burner (E48) Matural Gas 1 New & 4 Existing
Green Hammermilis
(E6 through E9,
E58) \$ 50 Fuel Storage Feeder Bin (ES) \$ 25 Green Chip Silo (E10) Green Wood Fibers/ Chips Emergency Generator, 865 bhp (E44) Finished Wood Peltet Product Fire Water Pump, 305 bhp (E45) Ohio Bun Pile (ES) Stacker/ Reclaimer Pite (E4 & E5') Green Wood Fibers/Chips 514 ■ Mobile Equipment 8 513 Bark Green Wood Chips Green Wood Chips Finished Product S8 Baghouse 3 (CD22) Fuel Storage Pile 1 (E4 & E5*) Loadout (E42) Cyclone 6 (CD21) Diesel Fuel
Storage Tanks
(E53 – E55) F 50
Electric Powered
Green Wood Chipper
(E2) \$ 50 So Screener (E3) Bark Fuel Debarker (E1) Debarked -021, C021, Pelletirer (50.621, E3-E36, E28-E30, E3-E34, E3-E38, E49-E51); -CD14, CD18, CD28, and -Wood fines that bypass the DHM Diesel (Trucks) Whole Logs Truck Dumps (E46 & E47) 20 Cydofilter 7 (CD23) E4 represents pile drop emissions while E5 represents wind erosion. 65 Air Pallution Control Device (Existing/New or Modified) Bark Process Unit (Existing/New or Modified) Stack (Existing/New or Modified) Piles 1 through 4 (ES) New Air Stream Process Stream Ar Stream Dust Silo (E43) To Dry Chip Silo (£13) Legend:

Chilled Air

APPENDIX C
POTENTIAL EMISSIONS CALCULATIONS

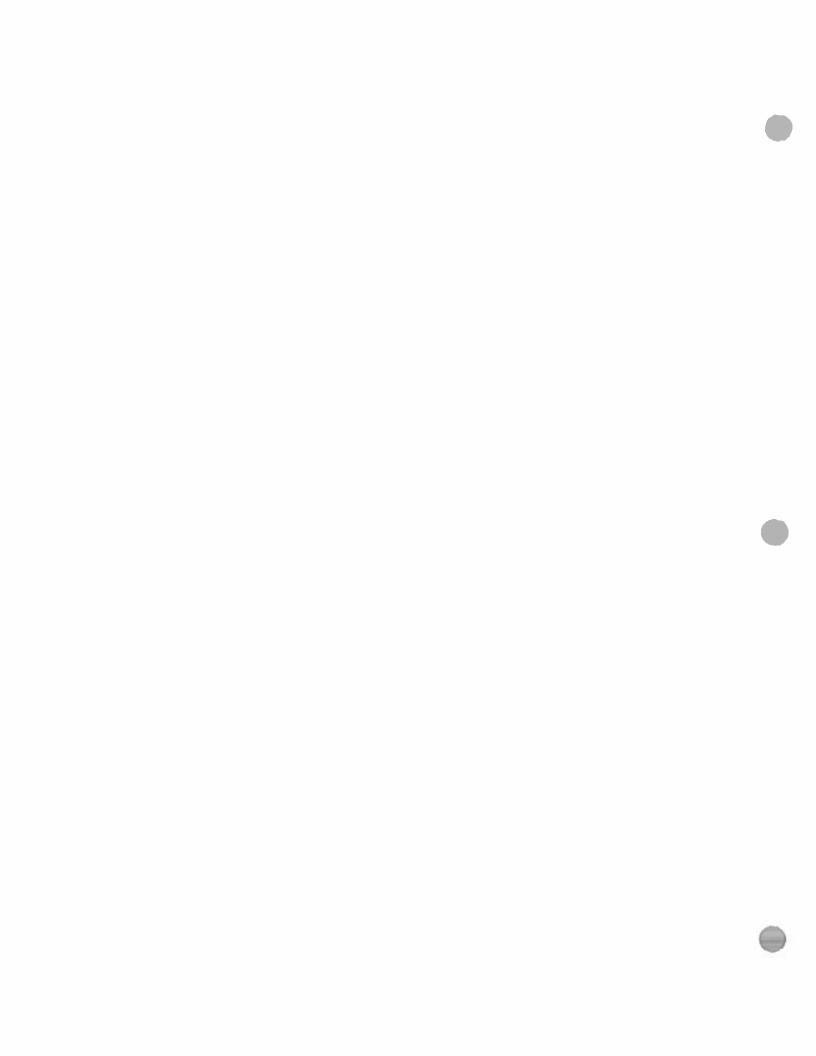


TABLE 1 FACILITY-WIDE CRITERIA & CO₂º POLLUTANT SUMMARY ENVIVA PELLETS GREENWOOD, LLC

	Unit ID	Source Description	Control Device ID	Control Device Description	CO (toy)	NO _x (tpy)	15P (tpy)	PM ₁₀ (tpy)	PM _{2.6} (tpy)	SO ₂	VOC (tpy)	CO ₂ e (tpy)
	E1	Debarker	:	1	;	:	10.28	0.28	0.05	:	:	;
	E2	Electric Powered Chipper	;	:	1	:	7,36	3.68	3.68	No.	1.92	
	E3	Green Wood Screening	**	••		;	1.46	1.46	1.46		:	t
8	E4	Pile Drop	:			***	90.0	0.027	0.0041		**	t
	E5	Storage Pilo Wind Erosion	**	**	***		2.83	1.41	0.21	i	3.03	ា
	E46	Truck Dump 1	**	:	;	1	0.03	0.012	0.002		:	1
	E47	Truck Dump 2	:		1	1	0,03	0.012	0.002	Ü	-	:
	E6	Green Hammermill 1										
	E7	Green Hammermill 2										
ā	E9	Green Hammermill 3	502 503	P.OZO DZO.1								
<u>.</u>	63	Green Hammermill 4	כחב, כחז	WEST, RICT	08 09	113.07	11 25	11 25	11.25	21 90	41.02	204 251
	E58	Green Hammermill 5			200	0.71	-			2		
	E10	Green Chip Silo										
	E11	Furnace	CD1 - 3	Cyclone, WESP, RTO-1								
č	E12	Oryer		Total Control		8	3			8	3	000
7.4	E	Furnace Bypass	;		67.2	U.B.S	2,10	1.94	B0.1	500	90.0	QB/
	E13	Dry Chip Silo	CD4	Bin Vent Filter 1	:	:	0,75	0.75	0.75		4.69	:
	E48	Dryer Duct Burner	:		88.	2.15	0.16	0.16	0.16	10.01	0.12	3.232
8	E59 - E94	Vertical Dry Hammermill 1 - 36	CD2/CD3 or CD24 then F11/CD2/CD2	WESP/RTO or Bin Vent Filter 3 then Furnace/WESP/RTO-1	0.62	0,74	56.27	56.27	56.27	Ĩ	20.33	1,110
2	E19	Pelletizer Feed Silo	CD10	Bin Vent Filter 2	:	1	0.75	0.75	0.75	;	10.0	1
	E20	Pelletizer 1										
	£21	Pellotizer 2										
	E22	Pelletizer 3						_				
	E24	Pelletizer 4										
	E25	Pelletizer 5										
	E26	Pelletizer 6	CO14s . c CO16	Backwises to a DTO.2/DCO.1	17.63	2 0.7	18 04	5.07	2 51	100	24 51	4.699
	E28	Pelletizer 7	5 CO	baginales 18 - C. N.O-E/NCO-1		h J	2			2	4	
	£29	Pelletizer B										
	E30	Pelletizer 9										
	E23	Pellet Cooler 1										20
	E27	Pellet Cooler 2										
74	E31	Pellet Cooler 3										
:	E32	Pelletizer 10										
	E33	Pelletizer 11										
	E34	Pellotizer 12										
	E36	Pelletizer 13										
	E37	Pelletizer 14										
	E38	Pelletizer 15	0000	. 000/10 044	17.63	202	10	20.0	196	60	24 61	300
	E49	Pelletizer 16	CD 100 - F. CD 13	beginates 28 - C. N.O.3/N.O.2		9	2	7	2	3	2	2
	E50	Pelletizer 17										
	ES1	Pelletizer 18										
	E35	Pellet Cooler 4										
	E39	Pettet Cooler 5										
	E52	Pellet Cooler 6										

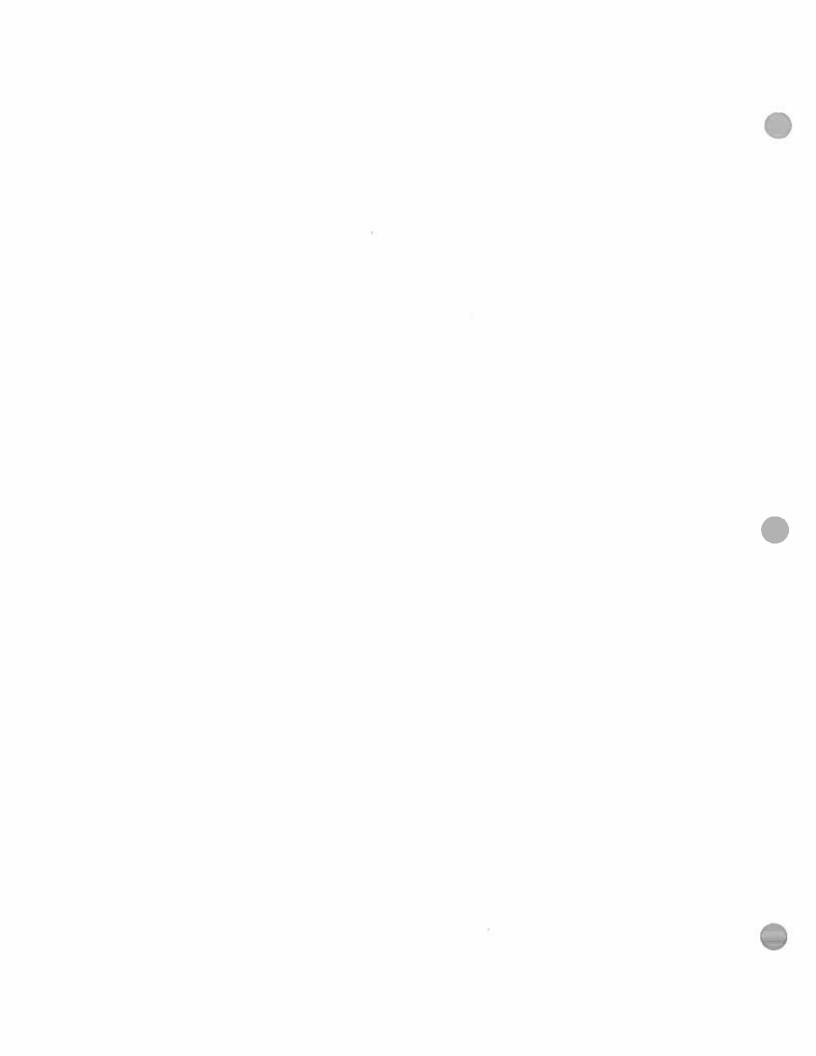
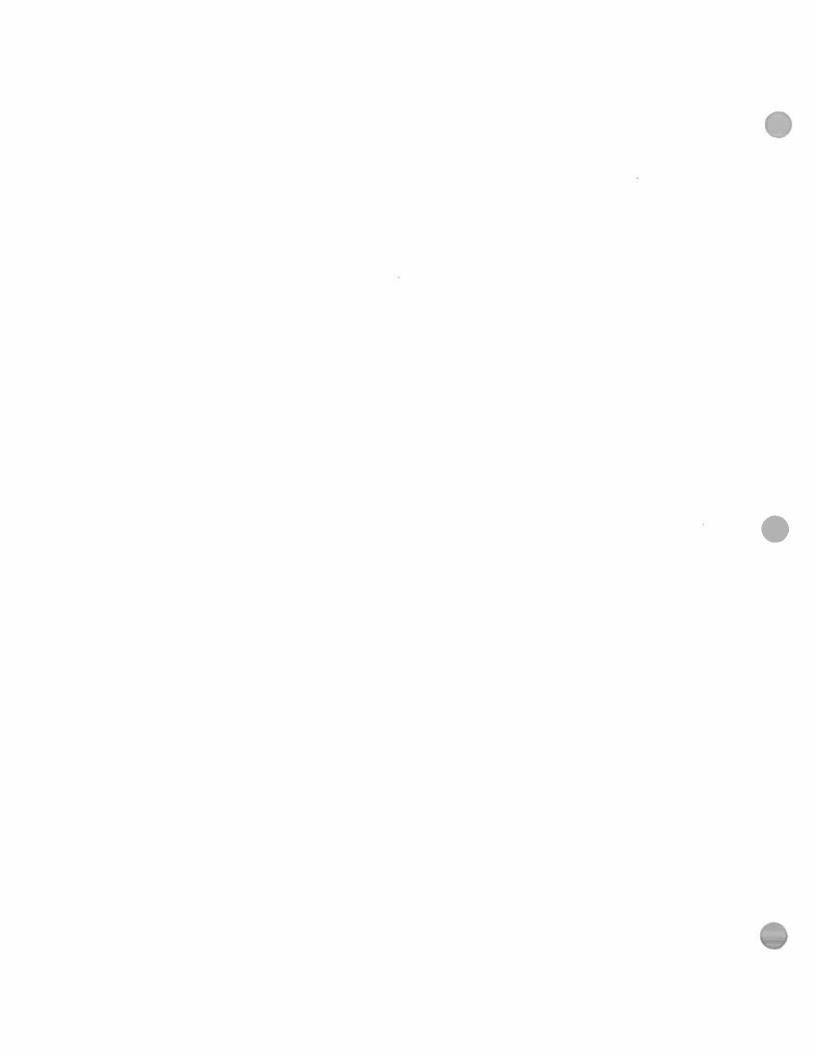



TABLE 1
FACILITY-WIDE CRITERIA & CO₂₀ POLLUTANT SUMMARY
ENVIVA PELLETS GREENWOOD, LLC

Process	Emission		Contract Devices 17		8	NOx	TSP	PMto	PM _{2.5}	SO ₂	VOC	co ₂ e
0	Unit 10	sonice nescribnos	Courton Device 10	counce peace peaceboom	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
	E40	Pellet Silo 1	0.00	a weathern.			37.0	32.0	37.0			
ě	E41	Pelfet Silo 2	NAU.	cyclolines 8	1	1	0.70	0.73	0.73		100	i ć
2	E42	Loadout	CD21, CD22	Cyclone 6, Baghouse 3	**	**	4.32	4.32	4.32	**	***	-
	E43	Dust Silo	CD23	Cyclofilter 7	1	. ***	1,24	1.24	1,24	;	1	-
	E44	Engine 1 (Generator)	:		0.19	2.74	8.58E-03	8.58E-03	8.58E-03	2,35E-03	4.77E-03	247.67
	E45	Engine 2 (Fire Pump)	4.0	35	0.44	0.50	0.025	0.025	0.025	8.30E-04	1.34E-03	87,33
å	E53	Woodyard Fuel Storage Tank	**		:	:		:			B.65E-04	:
:	E54	Fire Pump House Fuel Storage Tank	1		-	:		ា	ા	:	1,45E-04	55
	E55	Diesel Generator Fuel Storage Tank	:			-	:	1	:	:	2.88E-04	:
2	E56	Unpaved Roads	:	**	**		27.61	7.87	0.79	;		#
7.7	E57	Paved Roads	:	•	:	:	2.18	0.44	0.11	1	***	÷
				Total Emissions:	100.3	125.0	167.6	103.0	88.5	22.1	120.3	223,810
				Total Excluding Fugitives':	100.3	125.0	134.8	93.2	87.4	22.1	117.2	223,810
				PSD Major Source Threshold:	250	250	250	250	250	250	250	
				Major Source?	No	No	No	ON	No	No	No	

Notes:

¹ Fugitive emissions are not included in comparison against the major source threshold because the facility is not on the list of 28 source categories in 40 CFR 52.21.

Page 3 of 41

RAMBGLL

		Ą	Dryer & GHM (RTO-1)	Furnace Bypass	Dryer Duct Burner	DHM (RTO-1)	Pellet Coolers (#TO-2/RCO-1)	Petlet Coolers (RTO-1/RCO-2)	Dry Chip & Pelletizer	Chipper	Engine 1 (Generator)	Engine 2 (Fire Pump)	Total	Major
Description	CAS No.		(101)	(tpy)	(407)	((6))	(tpy)	(tpy)	(tpy)	(tby)	(ф)	(tpy)	(tpy)	Source
Acetaldehyde	0-10-51	٨	3.08	3.11E-03	J.26E-07	0.12	0.28	0.28			1,15€-03	4.09E-04	3,75	No
Acrolein	107-02-8	٠	2:00	0.02	3.862-07	0.18	0.41	0.41	ē		1 4DE-04	4.94E-05	3.01	No
Formaldehyde	50-00-0	>	1.99	0.02	1.61E-03	1.96E-03	1,05	1,05	0.28	H	1,795-03	6.306-04	4.40	γ
Methanol	67-56-1	>	2.44	٠	,	0,10	0.05	0.05	0.64	0 38		i.	3.66	Wo
Phenol	108-95-2	>	2.47	1,916-04	,	90.02	0.21	0.21		,			2.93	Š
Propionaldehyde	123-38-6	>	0.93	2.29E-04	,	0.20	0.12	0.12				O.	1.37	No
Acetophenone	98-86-2	۲	1 40E-07	1.205-08	'	7	. *	,	4	4	्र	Ģ	1.52£:07	9
Amenonia	7564-41-7	H	0.44	,	0.07	9	0.03	0,14	4	i e	ं	i,	0.72	묏
Antimony and compounds	**	١ ٧	5.02E-04	2.96E-05	-	24	-	4	1000	*	200	100	5.316-04	No
Arsenic	7440-38-2	٨	1.42E-03	8.266-05	4.29£-06		4.47E-DB	8.93E-06	(*)	08		.,	1.52E-03	Na
Benzene	71-43-2	,	91.0	2.146.08	4.516-05		4.69E-05	9.38E-05			1.41E-03	4.98E-04	0.19	No
Benzo(a)pyrene	50-32-8	>	1,14E-04	9.75£-06	2.585-08	-	2 685-08	5.36E-08			2.85E-07	1.006-07	1,245-04	No
Berylium	7440-41-7	>	7.15E-05	4.17E-06	2.586-07	+	2,686-07	5.36E-07	040	*		200	7,675-05	Mo
1,3-Butadiene	106-99-0	>					*	,			5 926-05	2.09E-05	8.01E-05	No
Cadmium	7440-43-9	>	4.12E-04	1.54€-05	2.366-05	-	2.46E-05	4.91E-05		,		Ģ.	5.24E-04	No No
Carbon tetrachloride	56-23-5	>	1.97E-03	1.69E-04	,	-		3.4	,			357	2.146-03	Wo
Chlorine	3782-50-5	>	0.69	2.96E-03	 -		*			,	,		0.70	완
Chlorobenzene	108-90-7	۶	1.45E-03	1.24E-04		्र	ं		0.80	8			1,575-03	Ν
Chlaroform	67-66-3	>	1.23E-03	,		4			*	.4		Ĩ.	1,235-03	No
Chromium VI	18540-29-9	>	4.15E-04		3.016-05	4	3.136-05	6.25E-05	4.	÷			\$.39E-04	No
Chromium-Other compounds	:	_	1.11E-03	7.88E-05		4		-4				,	1.195-03	ð
Cobalt compounds	;	>	4.246-04	2.44E-05	1.80E-06		1.88E-06	3.75E-06					4.562-04	92
Copper	7440-50-8	Z		6.406-08	ļ,		-					ľ	8.406-08	No
Dichloroberuene	106-46-7	>	1.65E-04		2.586-05		2.88E-05	5.365-05			,		2.71E-04	No
Dichloroethane, 1.2-	107-06-2	>	1.27E-03	1.09E-04	<u>'</u>	-	٠	275				,	1.386-03	No
Dichloropropane, 1,2-	78-87-5	>	1.45E-03	1.246-04							,		1.576-03	Мо
Diritrophenol, 2.4-	51-28-5	>	7.88E-06	6.75E-07		-	•				·		B.56E-06	No
Di(2-ethylhexyl)phthalate	117-81-7	٨	2.06E-06	1.766-07	,	,		٠					2.23E-06	No
Ethyl benzene	100-41-4	٨	1.36E-03	1,16E-04	,		1	,				-	1.47E-03	No
Hexachloroditionso-p-dioxin, 1,2,3,6,7,8-	57653-85-7	N	7.84E-10	1								-	7.84E·10	γQ
Нехале	110-54-3	٨	0.25		0.04	,	0.04	0.08			•	٠	0.41	γlo
Indena(1,2,3-cd)pyrene	193-39-5	γ	2.476-07	2.14E-10	3.855-08	G.	4.02E-08	8.04E-08		e e	0	•	4.07E-07	Мо
Hydrochloric acid	7647-01-0	٨	1.66	0.07				,		٠	504.5	•	1.74	Мо
Lead	7439-92-1	٨	3,126-03	1.B0E-04	1.07E-05		1,12E-05	2.23E-05		,			3.34E-03	γo
Manganese	7439-98-5	۲	0.10	6.00E-03	8.15E-06	١	8.49€-06	1 70E-05				•	11.0	Ą.
Mercury	7439-97-6	>	2.586-04	1.326-05	5.58E-06		5.91E-06	1.16E-05	٠	_	'		2.94E-04	£
Methyl bramide	74-83-9	۲.	8.57E-04	5.63E-05	•	'	•	,	٠	٠	•	,	7.136-04	γo
Methyl chloride	74-87-3	>	1.01E-03	8.63E-05		٠		٠			,	٠	1.096-03	Mo
3-Wethylchloranthrene	56-49-5	>	2.47E-07		3.86E-08		4.02E-08	8.04£-08	٠		٠	·	4.07E-07	γo
Methylene chloride	75-09-2	٨	0.01		3					·	(4)		0.01	No.
Haphthalene	91-20-3	٨	4.33E-03	3.64E:04	1.316.05	4.00	1,365-05	2 726 05		100			4,75E-03	윷
Nickel	7440-02-0	٨	2.38E-03	1.246-04	4.51E-05		4.69E-05	9.386-05	52	3		ξ,	2.69E-03	No
Nitrophenol, 4-	100-02-7	٨	4.826-08	4.13E-07		-		×	ं	(4)			5.236-06	No
Octachloradi benzadłazi n	3258-87-9	N		3.105-13	90		90	70			,	,	3.106-13	Mo
Pentachtorophenol	87-86-5	٨	2.23E-06	1,91E-07		7	*			3	'	•	2.43E-06	γo
Perchiaroethylene	127-18-4	٨	1.66E-03	1,436-04	9	339	7						1,816-03	완
Phosphorus metal, yellow or white	7723-14-0	>	1,71E-03	1,016-04	્	17.4	in the		*			í	1.82E-03	γlo
Polychlorinated biphenyls	1336-36-3	٠	3.57E:07	3.06E-08	e e	2						٠	3.88£-07	ŞÇ.
Polycyclic Organic Matter	:	۰	S.48E-03	4.69E-04	1.50E-05		1.566-05	3.12E-05		4	2.546-04	8.97E-05	6.35E-03	8
Selenium compounds	1	>	1.816.04	1.07E-05	5.15E-07		\$ 366-07	1.07E-06		c			1.94E-04	ş

TABLE 2
FACILITY-WIDE HAP EMISSIONS SUMMARY
ENVIVA PELLETS GREWWOOD, LLC

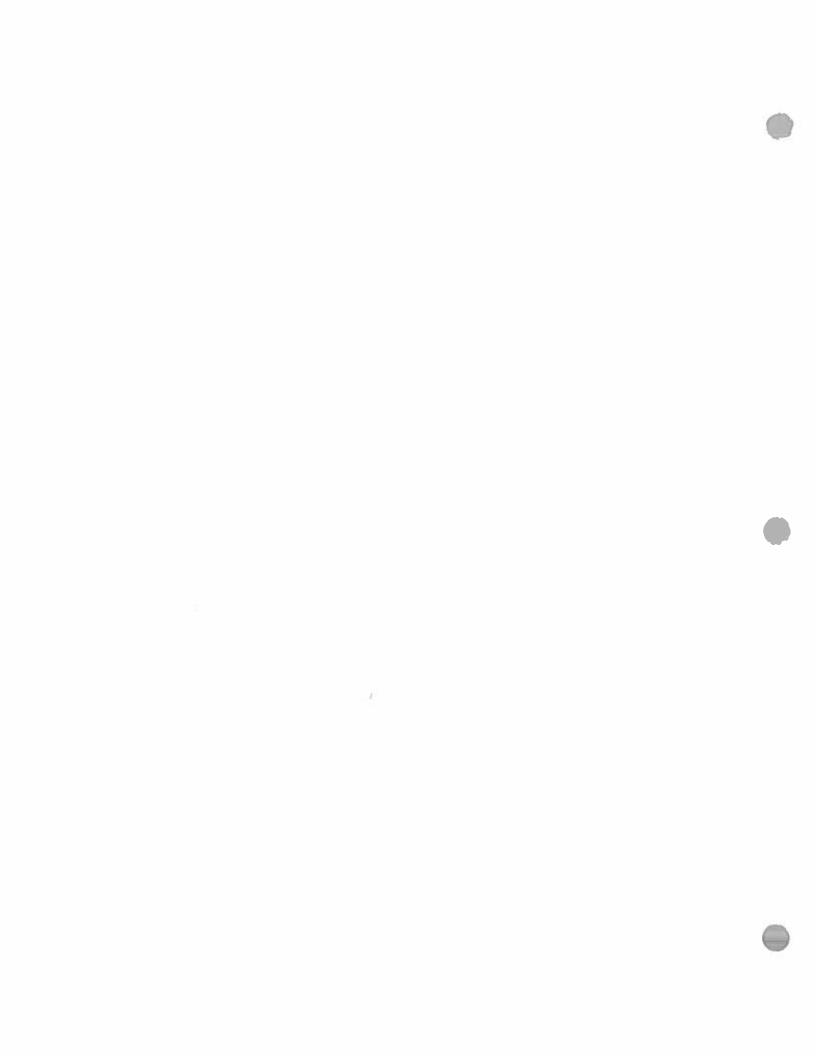
TABLE 2 FACILITY-WIDE HAP EMISSIONS SUMMARY ENVIVA PELLETS GREENWOOD, LLC

:	· 	HAP	Dryer & GHM (RTO-1)	Furnace Bypass	Dryer Duct Burner	DH3M (RTO-1)	Petlet Coolers (RTO-2/RCO-1)	Pellst Coolers (RTO-3/RCO-2)	Pulletizer Feed Silos	Chipper	(Generator)	Engine 1 Engine 2 (Generator) (Fire Pump)	Total	Major Source?
Description	CAS No.		(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	((b))	(tpy)	(4py)	(tpy)	(tpy)	(tpy)	
Svene	100-42-5	>	0.08	[*	,		*	10.00	+	*	0.08	Mo
Tetrachlorodibenzo-o-dioxin, 2,3,7,8-	1746-01-6	>	3.776-10	3.236-11				,	,	1000	٠	·	4.096-10	No
Toluene	108-88-3	٠	1 785-03	6.205-03	7.30E-05		7.59E-05	1,526-04			6.196-04	2.18E-04	Z.92E-03	旦
Trichloroethane, 1.1.1-	71-55-6	٠	1.36E-03	1,166-04			38	*	ő	ij			1.47E-03	No
Trichloroethylene	9-10-62	>	1,316.03	1 136-04		0.	3.0	- 60	i i	7		4	1,43E-03	오
Trichlorofluoromethane	75-69-4	z	1,806-03	100		,		*55		109	*	œ.	1.80E-03	Ş
Trichloranthenal, 2.4.6-	88-06-2	>	9.645-07	8.25E-08			2.4	*	,		(8)	25	1.05E-06	No
Vind chloride	75-01-4	>	7.88E-04	8.756-05				27	100	212		e.	8.56E-04	2
Xviene	1330-20-7	>	1,105-03	1.09E-08		*		***	*	100	4,316-04	1.52E-04	1.68E-03	No
Zinc	7440-66-6	Z	*	5.60E-08		*		**	*	100		,6	5.60E-08	윤
		TOTAL HAP	15.92	0.12	0.04	0.65	2.18	2.20	0.92	0.38	5.86E-03	2.07E-03	22.40	No

Page 4 of 41

TABLE 3 POTENTIAL EMISSIONS AT OUTLET OF RTO-1 STACK ROTARY DRYER, GHM, AND GREEN CHIP SILO - CRITERIA POLLUTANT EMISSIONS ENVIVA PELLETS GREENWOOD, LLC

Dryer Inputs


Annual Dried Wood Throughput	660,000 ODT/year	ODT/year
Max. Hourly Dried Wood Throughput of Dryer	75.3	75.3 ODT/hr
Furnace Heat Input	200.0	200.0 MMBtu/hr
Percent Hardwood	%0.0	
Percent Softwood	100.0%	
Annual Operation	8,760 hr/yr	hr/yr
Annual Heat Input	1,752,000 MMBtu/yr	MMBtu/yr
WESP Control Efficiency	80.66	
Number of RTO Burners	4	
RTO Burner Rating	88	8 MMBtu/hr
RTO Control Efficiency	92.00%	

Criteria Pollutant Calculations at the RTO Outlet:

Pollutant	Uncontrolled	Units	Footnote	Uncon	Uncontrolled & Unlimited Emissions ¹	Controlled & Unlimited Emissions ¹	ontrolled & Unlimited Emissions ¹	Controlle Limited Emis (PTE)	Controlled & Limited Emissions (PTE) ¹
	Emission Factor			Max (lb/hr)	Annual (tpy)	Max (Ib/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
00	0.18	TQO/qI	2	13.7	59.8	13.7	59.8	13.7	59.8
NOx	0.34	lb/ODT	2	25.6	112	25.6	112	25.6	112
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensable)	3.41	lb/oDT	2	257	1,125	2.57	11.2	2.57	11.2
SO ₂	0.025	Ib/MMBtu	AP-42, Section 1.6 ³	5.00	21.9	5.00	21.9	9.00	21.9
Total VOC (as propane)	2.49	Ib/ODT	2	187	820	9.36	41.0	9.36	41.0

Notes

- ¹ Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on proposed annual throughput. Controlled emissions are based on proposed short-term and annual throughputs and application of control device efficiencies.
- ² Emission factors for all pollutants except for SO2 are based on stack testing data from the Greenwood plant and include contingency. The emission factors represent uncontrolled
- ³ No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based upon the heat input of the dryer furnace using an emission factor for wood combustion from AP-42, Section 1.6.

TABLE 4 POTENTIAL EMISSIONS AT OUTLET OF RTO-1 STACK ROTARY DRYER, GHM, AND GREEN CHIP SILO - HAP & TAP POLLUTANT EMISSIONS ENVIVA PELLETS GREENWOOD, LLC

Dryer Inputs

Annual Dried Wood Throughput of Dryer	660,000 ODT/year	ODT/year
Max. Hourly Dried Wood Throughput of Dryer	75.3	75.3 ODT/hr
Furnace Heat Input (HHV)	200.0	200.0 MMBtu/hr
Percent Hardwood	0.0%	
Percent Softwood	100.0%	
Annual Operation	8,760 hr/yr	hr/yr
Annual Heat Input	1,752,000 MMBtu/yr	MMBtu/yr
Number of RTO Burners	4	
RTO Burner Rating	8	MMBtu/hr
RTO Control Efficiency	95.00%	

Potential HAP and TAP Emissions

POTENTIBI NAP BND 1AP EMISSIONS	•										
			Uncontrolled			Uncontrolled & Unlimited	L Unlimited	Controlled & Unlimited	& Unlimited	Controlled & Limited	Limited
Pollutant	HAP	VOC	Emission	Units	Footnote	Emissions	ions	Emissions	ions	Emissions (PTE)	(PTE)
			Factor			(lb/hr)	(tby)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Furnace/Dryer - Biomass Source											
Acetaldehyde	٨	٨	1.9E-01	Ib/ODT	1	14.0	61.5	0.70	3.08	0.70	3.08
Acrolein	٨	٨	1.2E-01	Ib/ODT	1	9.11	39.9	0.46	2.00	0.46	2.00
Formaldehyde	٨	٨	1.2E-01	lb/ODT	- 1	9.04	39.6	0.45	1.98	0.45	1.98
Methanol	٨	, A	1.5E-01	Ib/ODT	ı,	11.1	48.7	0.56	2.44	0.56	2.44
Phenol	*	٨	1.5E-01	tD/ODT	l	11.3	49.5	0.56	2.47	0.56	2.47
Propionaldehyde	>	¥	5.6E-02	Ib/ODT	1	4.23	18.54	0.21	0.93	0.21	0.93
Acetophenone	>	>	3.2E-09	tb/MMBtu	2,3	6.40E-07	2.80E-06	3.20E-08	1.40E-07	3.2E-08	1.4E-07
Antimony and compounds	>	z	7.9E-06	1b/MMBtu	2,4	1.58E-03	6.92E-03	1.15E-04	5.02E-04	1.1E-04	5.0E-04
Arsenic	>	z	2.2E-05	lb/MMBtu	2,4	4.40E-03	1.93E-02	3.19E-04	1.40E-03	3.2E-04	1,4E-03
Benzene	>	*	4,2E-03	lb/MMBtu	2,3	8.40E-01	3.68E+00	4.20E-02	1.84E-01	4.2E-02	1.8E-01
Benzo(a)pyrene	٨	٨	2.6E-06	lb/MMBtu	2.3	5.20E-04	2.28E-03	2.60E-05	1.14E-04	2.6E-05	1.1E-04
Beryllium	٨	S	1.16-06	Ib/MMBtu	2.4	2.20E-04	9.64E-04	1.60E-05	6.99E-05	1.6E-05	7.0E-05
Садтілт	٨	z	4.1E-06	Ib/MMBtu	2,4	8.20E-04	3.59E-03	5.95E-05	2.60E-04	5.9E-05	2.6E-04
Carbon tetrachtoride	>	>	4.5E-05	lb/MMBtu	2,3	9.00E-03	3.94E-02	4.50E-04	1.97E-03	4.5E-04	2.0E-03
Chlorine	٨	z	7.9E-04	lb/MMBtu	2,8	2.18E+00	9.55E+00	1.58E-01	6.92E-01	1.6E-01	6.9E-01
Chlorobenzene	٨	٨	3.3E-05	lb/MMBtu	2,3	6.60E-03	2.89E-02	3.30E-04	1.45E-03	3.3E-04	1.4E-03
Chloroform	٨	٨	2.8E-05	Ib/MMBtu	2,3	5.60E-03	2.45E-02	2.80E-04	1.23E-03	2.8E-04	1.2E-03
Chromium VI	۶.	z	3.5E-06	lb/MMBtu	2,4,5	7.00E-04	3.07E-03	5.08E-05	2.22E-04	5.1E-05	2.2E-04
Chromlum-Other compounds	٨	Z	1.8E-05	Ib/MMBtu	2,4	3.50E-03	1.53E-02	2.54E-04	1.11E-03	2.5E-04	1.1E-03
Cobalt compounds	٨	z	6.5E-06	lb/MMBtu	2.4	1.30E-03	5.69E-03	9.43E-05	4.13E-04	9.4E-05	4.1E-04
Dichloroethane, 1,2-	٨	٨	2.9E-05	lb/MMBtu	2.3	5.80E-03	2.54E-02	2.90E-04	1.27E-03	2.9E-04	1.3E-03
Dichloropropane, 1,2-	٨	٨	3.3E-05	lb/MMBtu	2.3	6.60E-03	2.89E-02	3.30E-04	1.45E-03	3,35-04	1.4E-03
Dinitrophenol, 2,4-	٨	٨	1.8E-07	lb/MMBtu	2.3	3.60E-05	1.58E-04	1.80E-06	7.88E-06	1.8E-06	7.9E-06
Di(2-ethylhexyi)phthalate	٨	٨	4.7E-08	tb/MMBtu	2,3	9.40E-06	4.12E-05	4.70E-07	2.06E-06	4.7E-07	2,1E-06
Ethyt benzene	>	٨	3.1E-05	1b/MMBtu	2,3	6.20E-03	2.72E-02	3.10E-04	1.36E-03	3.1E-04	1.46-03

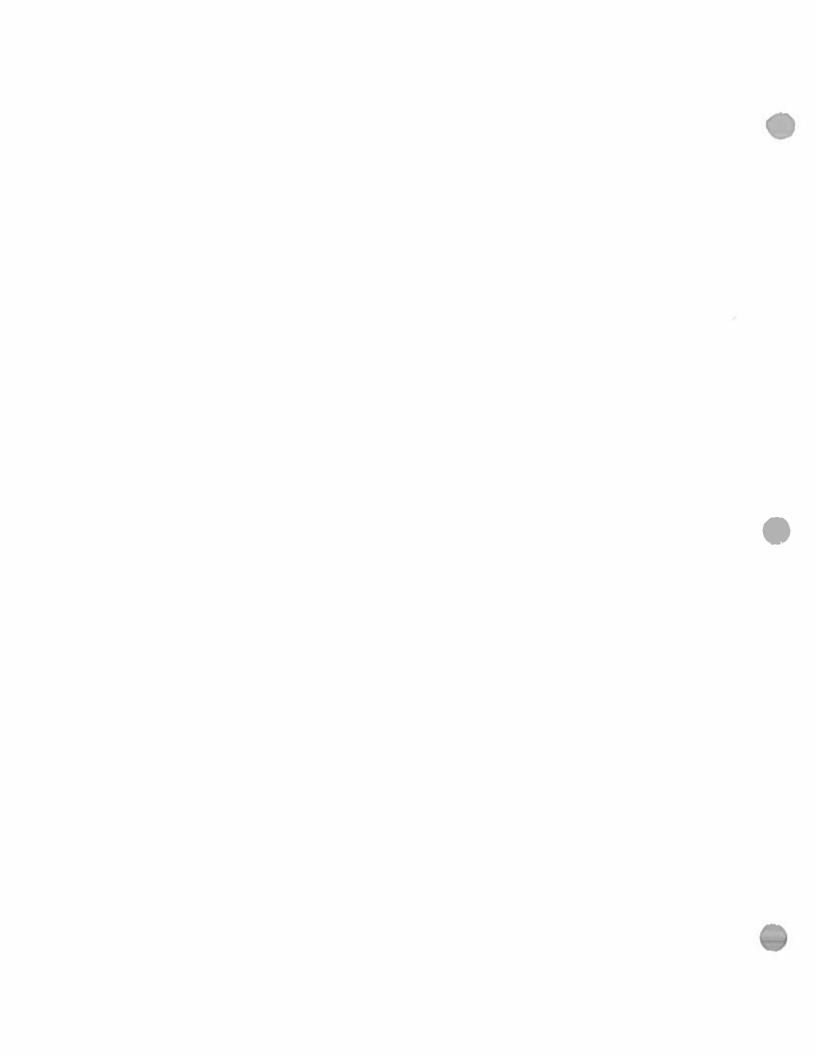


TABLE 4

POTENTIAL EMISSIONS AT OUTLET OF RTO-1 STACK
ROTARY DRYER, GHM, AND GREEN CHIP SILO - HAP & TAP POLLUTANT EMISSIONS
ENVIVA PELLETS GREENWOOD, LLC

			ENVIO	ENVIYA PELLEIS GREENWOOD, LLO	ENWOOD, LL						
Hexachlorodibenzo-p-dloxin, 1,2,3,6,7,8-	z	>	1.8E-11	lb/MMBtu	2,3	3.58E-09	1.57E-08	1.79E-10	7.84E-10	1.8E-10	7.8E-10
Hydrochloric acid	>	z	1,96-02	lb/MMBtu	2,6	3.80E+00	1.66E+01	3.80E-01	1.66E+00	3.8E-01	1,7E+00
Lead	>	z	4.8E-05	1b/MMBtu	2,4	9.60E-03	4.20E-02	6.96E-04	3.05E-03	7.0E-04	3.0E-03
Manganese	>	z	1,6E-03	lb/MMBtu	2.4	3.20E-01	1.40E+00	2.32E-02	1,02E-01	2.3E-02	1.0E-01
Mercury	>	z	3.5E-06	utaww/qi	2,4	7.00E-04	3.07E-03	5.08E-05	2.22E-04	5.1E-05	2.2E-04
Methyl bromide	>	>	1.5E-05	Ib/MMBtu	2.3	3.00E-03	1.31E-02	1.50E-04	6.57E-04	1.5E-04	6.6E-04
Methyl chloride	>	٨	2,3E-05	Ib/MMBtu	2.3	4.60E-03	2.01E-02	2.30E-04	1.01E-03	2.3E-04	1.0E-03
Methyl ethyl ketone	z	۶	5,4E-06	tb/MMBtu	2,3	1.08E-03	4.73E-03	5.40E-05	2.37E-04	5.4E-05	2.4E-04
Methylene chloride	>	۶	2.9E-04	1b/MMBtu	2,3	5.80E-02	2.54E-01	2.90E-03	1.27E-02	2.9E-03	1.3E-02
Naphthalene	>	>	9.7E-05	lb/MMBtu	2.3	1.94E-02	8.50E-02	9.70E-04	4.25E-03	9.7E-04	4.2E-03
Nickel	>	z	3,3E-05	lb/MMBtu	2.4	6.60E-03	2.89E-02	4.79E-04	2.10E-03	4.8E-04	2.1E-03
Nitrophenol, 4-	>	>	1.1E-07	Ib/MMBtu	2,3	2.20E-05	9.64E-05	1.10E-06	4.82E-06	1.1E-06	4.BE-06
Pentachlorophenoi	٨	2	5,1E-08	Ib/MMBtu	2	1.02E-05	4.47E-05	5.10E-07	2.23E-06	5.1E-07	2.2E-06
Perchloroethylene	>	z	3.8E-05	lb/MMBtu	2	7.60E-03	3.33E-02	3.80E-04	1.66E-03	3.8E-04	1.7E-03
Phosphorus metal, yellow or white	>	z	2.7E-05	lb/MMBtu	2,4	5.40E-03	2.37E-02	3.92E-04	1.71E-03	3.9E-04	1.7E-03
Polychlorinated biphenyls	>	>	8.2E-09	lb/MMBtu	2,3	1.63E-06	7.14E-06	8.15E-08	3.57E-07	8.2E-08	3,6E-07
Polycyclic Organic Matter	>	z	1.3E-04	Ib/MMBtu	2	2.50E-02	1.10E-01	1.25E-03	5.48E-03	1.3E-03	5.5E-03
Selenium compounds	٠	z	2.8E-06	Ib/MMBtu	2,4	5.60E-04	2,45E-03	4.06E-05	1.78E-04	4,1E-05	1.8E-04
Styrene	۲	>	1.9E-03	Ib/MMBtu	2,3	3,80E-01	1.66E+00	1.90E-02	8.32E-02	1.9E-02	8.3E-02
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	٨	>	8.6E-12	lb/MMBtu	2,3	1.72E-09	7.53E-09	8.60E-11	3.77E-10	8.6E-11	3.8E-10
Toluene	>	>	3.0E-05	lb/MMBtu	2,3	6.00E-03	2.63E-02	3.00E-04	1.31E-03	3.0E-04	1,3E-03
Trichloroethane, 1,1,1-	٨	z	3.1E-05	Ib/MMBtu	2	6.20E-03	2.72E-02	3.10E-04	1.36E-03	3,1E-04	1.4E-03
Trichloroethylene	٨	٨	3.0E-05	Ib/MMBtu	2,3	6.00E-03	2.63E-02	3.00E-04	1.31E-03	3.0E-04	1.3E-03
Trichtorofluoromethane	z	>	4.1E-05	Ib/MMBtu	2,3	8.20E-03	3.59E-02	4.10E-04	1.80E-03	4.1E-04	1.8E-03
Trichlorophenol, 2,4,6-	٨	Å	2.2E-08	Ib/MMBtu	2.3	4.40E-06	1.93E-05	2.20E-07	9.64E-07	2.2E-07	9.6E-07
Viny1 chloride	Å	٨	1.8E-05	Ib/MMBtu	2,3	3.60E-03	1.58E-02	1.80E-04	7.88E-04	1.8E-04	7.9E-04
Xylene	Y	Ä	2.5E-05	Ib/MMBtu	2.3	5.00E-03	2.19E-02	2.50E-04	1.10E-03	2.5E-04	1,1E-03
			Total HAP Em	Total HAP Emissions (related to biomass)	d to biomass)	9.99	282	3.58	15.7	3.58	15.7

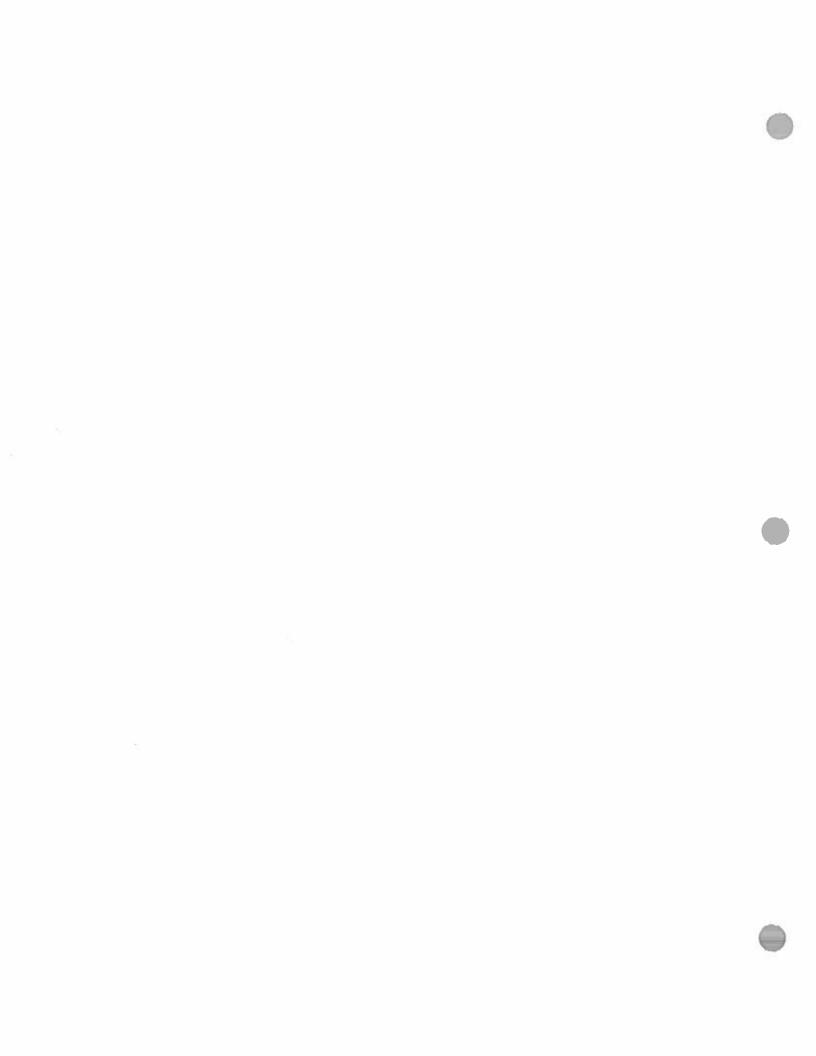
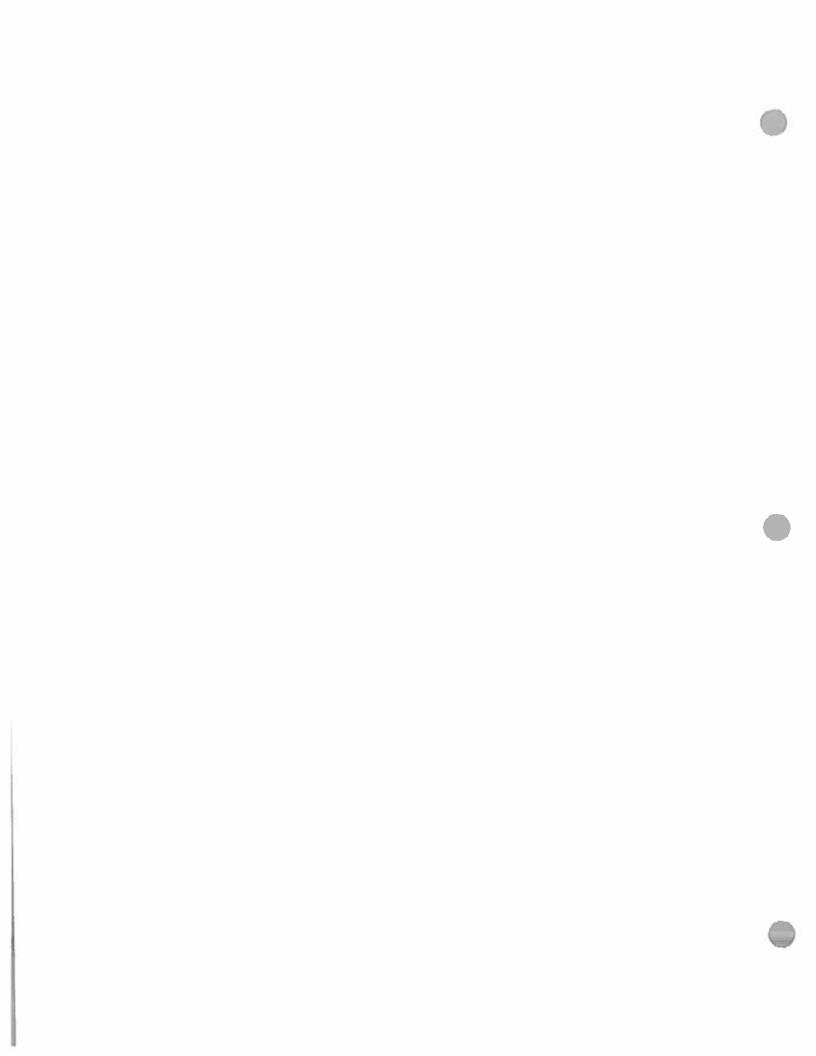



TABLE 4
POTENTIAL EMISSIONS AT OUTLET OF RTO-1 STACK
ROTARY DRYER, GHM, AND GREEN CHIP SILO - HAP & TAP POLLUTANT EMISSIONS
ENVIVA PELLETS GREENWOOD, ILC

2.5E-07 2.5E-07 2.5E-07 2.5E-06 3.3E-07 1.9E-04 3.3E-06 2.2E-06 2.1E-06 2.5E-07 4.4E-01 2.7E-05 2.9E-04 1.6E-06 2.5E-07 1.6E-07 1,6E-07 1.5E-04 1.6E-04 8.4E-05 **AUTION** (tpy) 2.5E-07 2.5E-07 1.2E-05 1.6E-07 4.1E-07 1.0E-02 2.5E-07 6.9E-05 3.6E-05 4.7E-04 3.8E-07 5.2E-05 2.9E-04 2.3E-06 3.3E-06 Emissions (PTE)10 2.5E-01 0.26 (lb/hr) 5.6E-08 6.6E-05 7.5E-07 5.6E-08 5,6E-08 4.8E-07 5.6E-07 7.5E-08 6.3E-06 5.6E-08 3.8E-08 3.8E-07 4.4E-05 3.8E-05 9.4E-08 5.6E-08 1.6E-05 5.0E-07 1.05-01 3.8E-08 3.5E-05 2.6E-06 2.4E-03 8.2E-06 6.6E-05 5.6E-08 5.6E-08 5.6E-08 3.8E-08 B.8E-08 5.6E-02 1.2E-05 1.9E-05 1.6E-07 NEW. 5.3E-07 7.5E-07 1.1E-04 0.059 Total HAP Emissions (related to natural gas) Footnote 4,7 4.7 4.7 4,7 4,7 4.7 lb/MMscf lb/MMscf lb/MMscf Ib/MMscf Ib/MMscf lb/MMscf lb/MMscf lb/MMscf Ib/MMscf Ib/MMscf Ib/MM/scf Ib/MMscf Ib/MMscf Ib/MMscf lb/MMscf Ib/MMscf lb/MMscf lb/MMscf lb/MMscf Ib/MMscf Ib/MMscf Ib/MMscf Units lb/MMscf Ib/MMScf Ib/MMscf lb/MMscf lb/MMscf Ib/MMscf lb/MMscf Ib/MMscf lb/MMscf lb/MMscf lb/MMscf Ib/MMscf Ib/MMscf lb/MMscf Emission Factor 1.8E-06 1.2E-06 1.8E-06 1.2E-06 1.BE-06 2.4E-05 1.5E-05 1,8E-06 1.1E-03 1,8E-06 1.8E-06 1.8E-06 2.1E-03 1.2E-03 1.6E-05 1.8E-05 2.4E-06 2.0E-04 2.8E-06 1.2E-05 1,4E-03 8.4E-05 1.2E-06 6.1E-04 3.05-06 7.5E-02 1.8E-06 3.8E-04 2.1E-03 1.7E-05 5.0E-06 5.0E-04 2.6E-04 2.4E-05 3.4E-03 VOC Z z Z HAP z RTO Burner - Natural Gas Source ,12-Dimethylbenz(a)anthracene Pollutant Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene 3-Methylchloranthrene 2-Methylnaphthalene 3enzo(b)fluoranthene Jenzo(g.h.i)perylene 3enzo(k)fluoranthene Selenium compounds Jenz(a)anthracene Cobalt compounds **Dichlorobenzene** 3enza(a)pyrene **Acenaphthylene** Acenaphthene Acetaldehyde ormaldehyde Chromlum VI henanthrene luoranthene Naphthalene Anthracene Aanganese Cadmium Ammonia eryffium Chrysene Acrolein Senzene lugrene Arsenic Mercury oluene yrene Nckel ead

RAMBGLL

TABLE 4 POTENTIAL EMISSIONS AT OUTLET OF RTO-1 STACK ROTARY DRYER, GHM, AND GREEN CHIP SILO - HAP & TAP POLLUTANT EMISSIONS ENVIVA PELLETS GREENWOOD, LLC

Mores

- * Emission factors were derived based on stack testing data for the Greenwood plant and comparable Enviva facilities and include contingency. The emission factors represent uncontrolled emissions.
- Emissian factors (criteria and HAP/TAP) for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fith Edition, Volume 1, Chapter 1.6 Wood Residue Combustion in Boilers, 09/03
- ³ The control efficiency of 95.0% for the RTO is applied to all VOC hazardous and toxic pollutants.
- 4 The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants from the dryer and duct burners. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting.
- * Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP
- The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.
 - Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98. The emission factors for acetaldehydo, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.
- It was assumed that chlorine is not oxidized in the RTO.
- Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on proposed annual throughputs and application of control device efficiencies.
- 10 No control devices or limitations proposed for this unit.

Abbreviations:

CAS - chemical abstract service

CH4 - methane

CO - carbon monoxide

CO COLOGII III MAINAINE

CO2 - carbon dioxide

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns PM_{5.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

PM - particulate matter

ODT - oven dried tons

CO2e - carbon dioxide equivalent

HAP - hazardous air pollutant

hr - hour

kg - kilogram

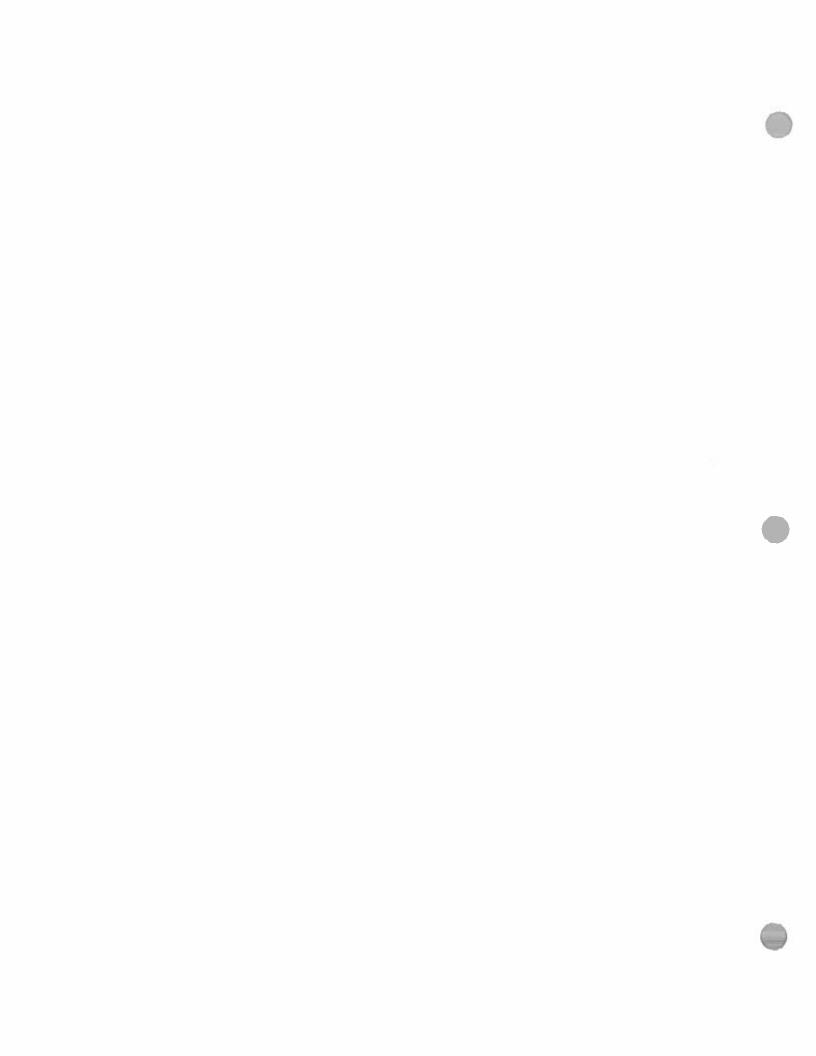
punod - qj

MMBtu - Million British thermal units

NOx - nitrogen oxides

N₂O - nitrous oxide

yr - year


WESP - wet electrostatic precipitator

VOC - volatile organic compound

TAP - taxic air pollutant

tpy - tons per year

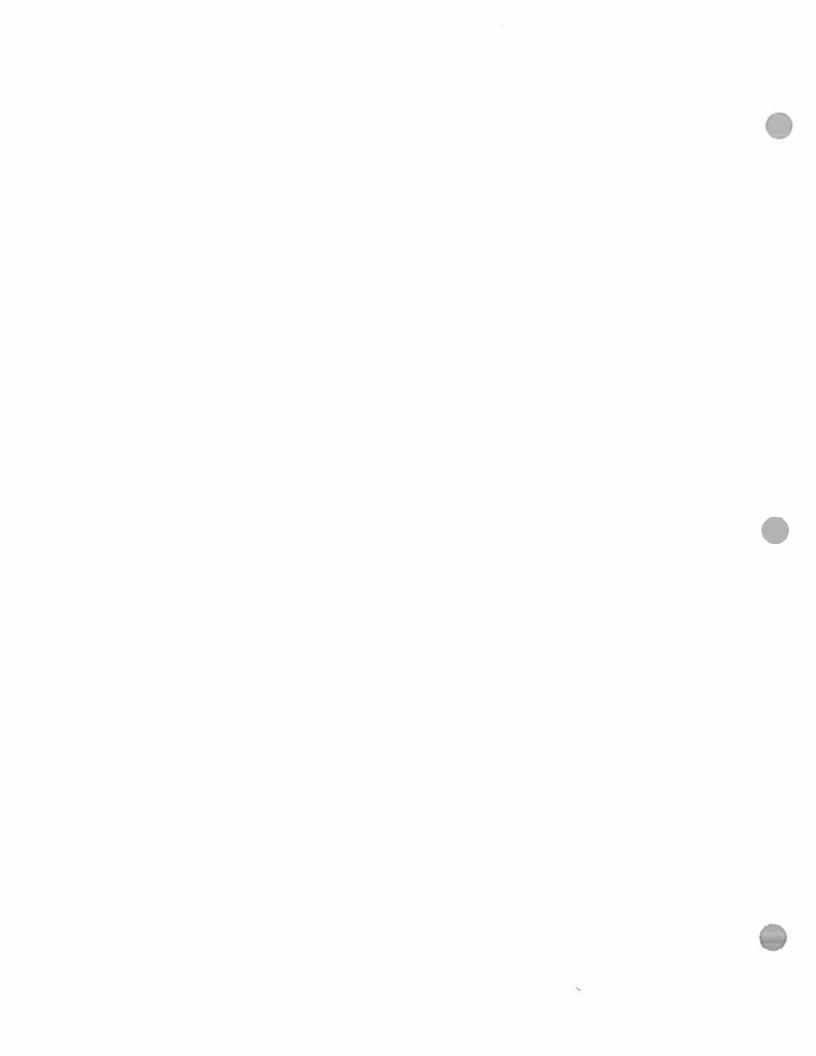
SO₂ - sulfur dioxide

TABLE 5 POTENTIAL EMISSIONS - FURNACE BYPASS (COLD START-UP) ENVIVA PELLETS GREENWOOD, LLC

Calculation Basis

Hourly Heat Input Capacity (HHV)	30	MMBtu/hr
Annual Heat Input Capacity	1,500	MMBtu/yr
Hours of Operation ¹	50	hr/yr
Annual Diesel Usage ²	200	gal/yr
Hourly Diesel Usage ²	30	gal/hr

Notes:


- The furnace bypass stack will be used when the furnace is started up from a cold shutdown until the secondary combustion zone temperature approaches 600 °F.
 The heat input rate of the furnace during this initial stage of the start-up is not expected to exceed 15% of the maximum heat input rate of the unit. Once the secondary combustion zone temperature reaches 600 °F, the unit's induced draft fan is started and, although the bypass stack remains open, it is no longer exhausting emissions from the furnace. Instead, the bypass stack remains open to allow ambient air to be pulled through the dryer and during this time emissions are routed to the control devices for the furnace and dryer. Once the secondary combustion zone temperature reaches approximately 900 °F, the furnace bypass stack is closed. Use of the furnace bypass stack for cold start-ups will not exceed 8 hours per start-up and 50 hours per year.
- 2 The amount of fuel used per event is typically 15 to 30 gallons and the annual usage is typically 100 to 200 gallons. The 30 gallons per start-up are conservatively assumed to be used in one hour or less for purposes of estimating maximum hourly emissions.

Potential Criteria Pollutant Emission	s - Biomass Comb	ustion						
Pollutant	Uncontrolled Emission	Units		rolled & Emissions ²		oiled & Emissions ²		& Limited ns (PTE) ²
	Factor		Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
CO	0.60	lb/MMBtu ¹	18 0	78.8	18 0	78.8	18.0	0.45
NOx	0.22	Ib/MMBtu ¹	6 60	28.9	6.60	28.9	6 60	0.17
SO,	0.025	Ib/MMBtu ¹	0.75	3 29	0 75	3.29	0 75	0 019
voc	0.017	Ib/MMBtu ¹	0,51	2 23	0.51	2.23	0.51	0 013
Total PM	0.58	Ib/MMBtu ¹	17,3	75.8	17.3	75.8	17.3	0.43
Total PM ₁₀	0.52	lb/MM8tu ¹	15.5	67.9	15.5	67.9	15.5	0.39
Total PM _{2.5}	0.45	(b/MMBtu ¹	13.4	58.7	13.4	58.7	13,4	0.34

Notes:

- ¹ CO, NO_x, SO_z, PM, PM₁₀, PM₂₊ and VOC emission rates based on AP-42, Chapter 1.6 Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. PM, PM₁₀, and PM₂₊ factors equal to the sum of the filterable and condensable factors from Table 1.6-1, VOC emission factor excludes formaldehyde
- 2 Unlimited emissions are based on the maximum hourly heat input for this operating mode at 8,760 hours/year. Limited emissions are based on the proposed annual operating hour limit

Pollutant	Uncontrolled Emission	Units	Footnote	Uncont Unlimited			olled & Emissions ²		s (PTE)
,	Factor		7.00	Max (lb/hr)	Annuai (tpy)	(lb/hr)	Annual (tpy)	(lb/hr)	Annuai (tpy)
Acetaldehyde	8 30E-04	lb/MMBtu	1	2.49E-02	1.09E-01	2 49E-02	1 09E-01	2.49E-02	6.23E-04
Acrolein	4 00E-03	lb/MMBtu	1	1.20E-01	5 26E-01	1.20E-01	5.26E-01	1.20£-01	3 00E+03
Formaldehyde	4.40E-03	lb/MMBtu	1	1 32E-01	5 78E-01	1.32E-01	5.78E-01	1.32E-01	3 30E-03
Phenol	5.10E-05	Ib/MMBtu	1	1.53E-03	6 70E-03	1.53E-03	6.70E-03	1.53E-03	3.83E-05
Propionaldehyde	6.10E-05	lb/MMBtu	11	1.83E-03	B 02E-03	1.83E-03	B.02E-03	1.83E-03	4.58E-05
Acetophenone	3.2E-09	Ib/MMBtu	1	9 60E-08	4.20E-07	9.60E-08	4 20E-07	9 60E-08	2.40E-09
Antimony and compounds	7.9E-06	Ib/MMBtu	1	2 37E-04	1.04E-03	2 37E-04	1.04E-03	2.37E-04	5.93E-06
Arsenic	2.2E-05	lb/MMBtu	1	6.60E-04	2 89E-03	6.60E-04	2.89E-03	6 60E-04	1 65E-05
Benzo(a)pyrene	2.6E-06	Ib/MMBtu	1	7.80E-05	3 42E-04	7_80E-05	3 42E-04	7.80E-05	1 95E-06
Beryllium	1,1E-06	Ib/MMBtu	1	3 30E-05	1.45E-04	3.30E-05	1.45E-04	3.30E-05	8.25E-07
Cadmium	4_1E-06	Ib/MMBtu	1	1.23E-04	5 39E-04	1 23E-04	5 39E-04	1.23E-04	3 08E-06
Carbon tetrachloride	4 5E-05	lb/MMBtu	1	1.35E-03	5 91E-03	1.35E-03	5.91E-03	1.35E-03	3 38E-05
Chlorine	7.9E-04	Ib/MMBtu	1	2 37E-02	1.04E-01	2 37E-02	1 04E-01	2 37E-02	5 93E-04
Chlorobenzene	3 3E-05	Ib/MMBtu	1	9 90E-04	4.34E-03	9.90E-04	4.34E-03	9 90E-04	2.48E-05
Chromium-Other compounds	2_1E-05	Ib/MMBtu	1	6.30E-04	2.76E-03	6 30E-04	2.76E-03	6.30E-04	1.58E-05
Cobalt compounds	6.5E-06	lb/MMBtu	1	1.95E-04	8 54E-04	1 95E-04	B 54E-04	1.95E-04	4 88E-06
Dinitrophenol, 2,4-	1.8E-07	Ib/MMBtu	1	5.40E-06	2 37E-05	5 40E-06	2.37E-05	5_40E-06	1.35E-07
Di(2-ethylhexyl)phthalate	4.7E-08	Ib/MMBtu	1	1.41E-06	6 18E-06	1_41E-06	6 18E-06	1.41E-06	3.53E-08
Ethyl benzene	3:1E-05	Ib/MMBtu	1	9.30E-04	4.07E-03	9 30E-04	4 07E-03	9_30E-04	2 33E-05
Dichloroethane, 1,2-	2 9E-05	lb/MMBtu	1	B 70E-04	3 B1E-03	8.70E-04	3 81E-03	8 70E-04	2 18E-05
Hydrochloric acid	1.9E-02	Ib/MMBtu	1	5.70E-01	2 50E+00	5.70E-01	2 50E+00	5.70E-01	1.43E-02
Lead	4.8E-05	Ib/MMBtu	1	1.44E-03	6 31E-03	1.44E-03	6.31E-03	1.44E-03	3.60E-05
Manganese	1.6E-03	lb/MMBtu	1	4.80E-02	2.10E-01	4 80E-02	2.10E-01	4.80E-02	1.20E-03
Mercury	3.5E-06	Ib/MMBtu	1	1.05E-04	4 60E-04	1.05E-04	4.60E-04	1.05E-04	2 63E-06
Methyl bromide	1.5E-05	lb/MMBtu	1	4 50E-04	1,97E-03	4.50E-04	1.97E-03	4 50E-04	1.13E-05
Methyl chloride	2 3E-05	lb/MMBtu	1	6 90E-04	3 02E-03	6.90E-04	3.02E-03	6 90E-04	1.73E-05
Trichloroethane, 1,1,1-	3.1E-05	Ib/MMBtu	1	9.30E-04	4 07E-03	9,30E-04	4 07E+03	9_30E-04	2.33E-05
Naphthalene	9.7E-05	lb/MMBtu	1	2.91E-03	1.27E-02	2 91E-03	1.27E-02	2.91E-03	7.28E-05
Nickel	3.3E-05	Ib/MMBtu	1	9.90E-04	4 34E-03	9 90E-04	4:34E-03	9.90E-04	2.48E-05

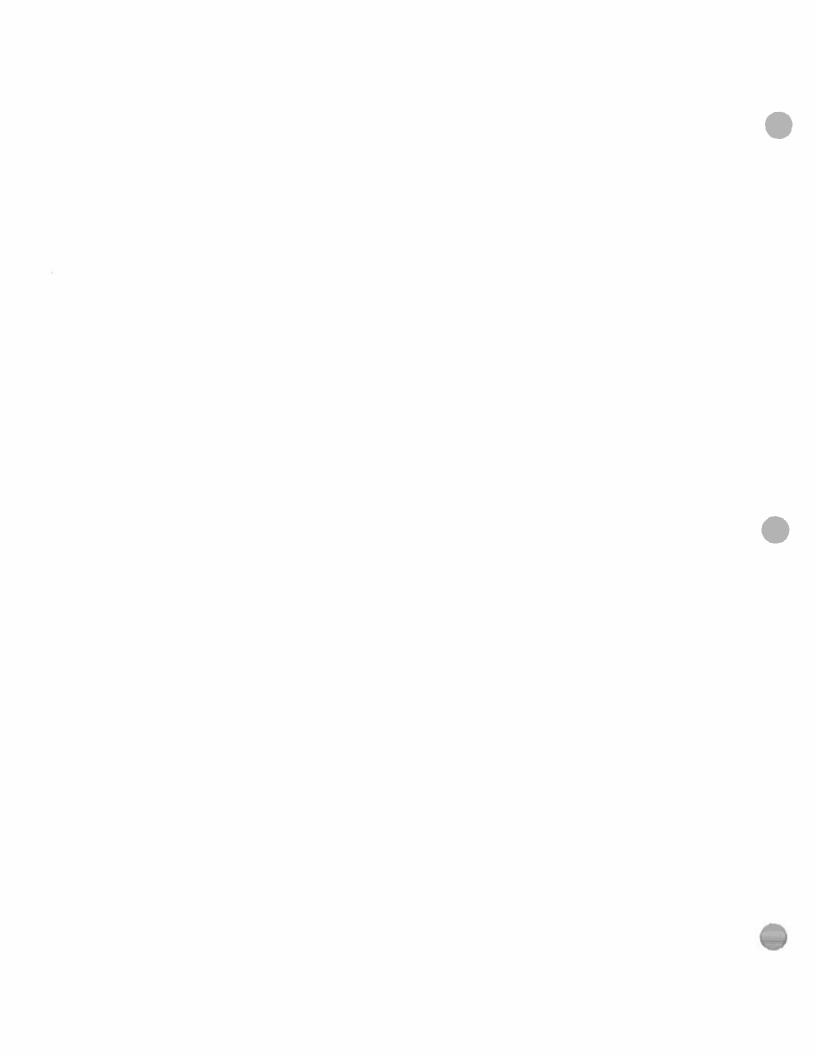
TABLE 5 POTENTIAL EMISSIONS - FURNACE BYPASS (COLD START-UP) $^{\rm t}$ ENVIVA PELLETS GREENWOOD, LLC

Total	HAP Emissions	(Biomass Co	mbustion)	0.94	4.12	0.94	4.12	0.94	0.024
Vinyl chloride	1.8E-05	Ib/MMBtu	1	5 40E-04	2.37E-03	5.40E-04	2.37E-03	5.40E+04	1 35E-05
Trichlorophenol, 2,4,6-	2 2E-08	lb/MMBtu	1	6 60E-07	2 89E-06	6 60E-07	2 89E-06	6 60E-07	1,65E+08
Trichloroethylene	3.0E+05	lb/MMBtu	1	9 00E-04	3 94E-03	9 00E-04	3 94E-03	9 00E-04	2 25E-05
Tetrachlorodibenzo-p-dioxin, 2.3,7,8-	B.6E-12	Ib/MMBtu	1	2 58E-10	1.13E-09	2.58E-10	1,13E-09	2.58E-10	6 45E-12
Selenium compounds	2.8E+06	Ib/MMBtu	1	8-40E-05	3.68E-04	B.40E-05	3 68E-04	B.40E-05	2 10E-06
Dichloropropane, 1,2-	3.3E-05	Ib/MMBtu	1	9 90E-04	4 34E-03	9.90E-04	4:34E-03	9 90E-04	2 48E-05
Polycyclic Organic Matter	1.3E-04	lb/MMBtu	1	3.75E-03	1.64E-02	3 75E-03	1 64E-02	3.75E-03	9.38E-05
Polychlorinated biphenyls	8 2E-09	lb/MMBtu	1	2.45E-07	1.07E-06	2.45E-07	1.07E-06	2.45E-07	6,11E-09
Phosphorus metal, yellow or white	2.7E-05	fb/MMBtu	1	8.10E-04	3 55E-03	8 10E-04	3 55E-03	8:10E-04	2 03E-05
Perchloroethylene	3 8E-05	lb/MMBtu	1	1.14E-03	4 99E-03	1.14E-03	4 99E-03	1.14E-03	2 85E-05
Pentachlorophenol	5.1E-08	lb/MMBtu	3	1.53E-06	6 70E-06	1.53E-06_	6.70E-06	1.53E-06	3 83E-08
Nitrophenol, 4-	1.1E-07	lb/MMBtu	1	3.30E-06	1.45E+05	3 30E-06	1.45E-05	3.30E-06	B.25E+08

Notes:

- 1 Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 Wood Residue Combustion in Boilers, 09/03
- 2 Unlimited emissions are based on the maximum hourly heat input for this operating mode at 8,760 hours/year. Limited emissions are based on the proposed annual operating hour limit.

Potential Criteria Pollutant Emissions - Diesel Fuel Combustion


Pollutant	Uncontrolled Emission	Units	Uncont	rolled & Emissions		olled & Emissions	Controlled Emission	& Limited ns (PTE)
	Factor		(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
co	5	lb/Mgal ¹	1.50E-01	5 00E-04	1,50E-01	5 00E-04	1.50E-01	5 00E+04
NO.	20	Ib/Mgal ¹	6 00E-01	2 00E-03	6 00E-01	2.00E-03	6 00E-01	2.00E-03
50,	0.2	lb/Mgal ¹	6 39E+03	2.13E-05	6.39E-03	2 13E-05	6 39E-03	2 13E-05
voc	0.2	Ib/Mgal ¹	6 DOE-03	2 00E-05	6 00E+03	2.00E-05	6.00E-03	2.00E-05
Total PM/PM ₁₀ /PM _{2.5}	3,3	Ib/Mgal ¹	9.90E-02	3 30E-04	9_90E-02	3.30E-04	9 90E-02	3.30E-04

Notes:.
1 CO, NO₂, SO₂, PM, and VOC emission rates based on AP-42, Chapter 1.3 - Fuel Oil Combustion, 5/10 for distillate fuel oil combustion. Emissions of SO₂ assume a 15 ppm sulfur content in diesel fuel.

Pollutant	Uncontrolled Emission	Units	Footnote	Uncont Unlimited	rolled & Emissions		olled & Emissions	Controlled Emission	
	Factor			(lb/hr)	(tpy)	(lb/hr)	Annuai (tpy)	(lb/hr)	(tpy)
Formaldehyde	3.30E-02	Ib/Mgal	1	9.90E-04_	3.30E-06	9.90E-04	3.30E-06_	9.90E-04	3.30E-0
Acenaphthene	2.11E-05	lb/Mgal	1	6.33E-07	2.11E-09	6.33E-07	2.11E-09	6.33E-07	2,11E-0
Acenaphthylene	2.53E-07	lb/Mgal	1	7.59E-09	2.53E-11_	7.59E-09	2.53E-11	7.59E-09	2.53E-1
Anthracene	1.2E-06	Ib/Mgal	1	3 66E-08	1.22E-10	3 66E-08	1.22E-10	3.66E-08	1.22E-1
Arsenic	4.0E-06	lb/MMBtu	1 _	1.68E-05	5,60E-08	1.68E-05_	5.60E-08	1.68E-05	5.60E-0
Benzene	2.1E-04	Ib/Mgai	1	5.42E-06	2.14E-08	6.42E-06	2.14E-08	6.42E-06	2,14E-0
Benz(a)anthracene	4 0E-06	Ib/Mgal	1	1.20E-07_	4.01E-10	1.20E-07	4.01E-10	1.20E-07	4.01E-1
Benzo(b,k)fluoranthene	1.5E-06	lb/Mgal	1	4.44E-08	1.48E-10	4.44E-08	1.48E-10	4.44E-08	1.48E-1
Benzo(a,h,i)perylene	2 3E-06	lb/Mgal	1	6.78E-08	2.26E-10	_6.78E-08	2.26E-10	6.78E-08	2.26E-1
Beryllium	3.0E-06	lb/MMBtu	1	1.26E-05	4.20E-08	1.26E-05	4.20E-0B	1.26E-05_	4.20E-0
Cadmium	3.0E-06	lb/MMBtu	1	1.26E-05	4.20E-08	1.26E-05	4.20E-08	1.26E-05	4.20E-0
Chromium-Other compounds	3.0E-06	Ib/MMBtu	1	1.26E-05	4.20E-08	1.26E-05	4 20E-08	1.26E-05	4.20E-0
Chrysene	2.4E-06	Ib/Mgal	1	7.14E-08	2.38E-10	7.14E-08	2.38E-10_	7.14E-08	2.38E-1
Copper	6.0E-06	Ib/MMBtu	1	2.52E-05	8.40E-08	2.52E-05	8.40E-08	2.52E-05	8.40E-0
Dibenzo(a,h) anthracene	1.7E-06	fb/Mgal	1	5.01E-08	1.67E-10	5.01E-08	1.67E-10	5.01E-08	1.67E-1
Ethyl benzene	6.4E-05	lb/Mgal	1	1.91E-06	6.36E-09	1.91E-06	6.36E-09	1.91E-06	6.36E-0
Fluoranthene	4.8E-06	lb/Mgal	1	1.45E-07	4.B4E-10	1.45E-07	4 84E-10	1.45E-07	4.84E-1
	4.5E-06	Ib/Mgal	1	1.34E-07	4.47E-10	1.34E-07	4.47E-10	1.34E-07	4.47E-
Fluorene	2.1E-06	lb/Mgal	1	6.42E-08	2.14E-10	6.42E-08	2.14E-10	6.42E-08	2.14E-
Indeno(1,2,3-cd)pyrene	9.0E-06	Ib/MMBtu	1	3.78E-05	1.26E-07	3.78E-05	1.26E-07	3.78E-05	1.26E-0
Lead	6.0E-06	lb/MMBtu	 	2.52E-05	8.40E-08	2.52E-05	8.40E-08	2.52E-05	8.40E-0
Manganese	3.0E-06	lb/MMBtu	1	1.26E-05	4.20E-08	1.26E-05	4.20E-08	1.26E-05	4 20E-0
Mercury	2.4E-04	Ib/Mgal	1	7.08E-06	2.36E-08	7.08E-06	2.36E-08	7.08E-06	2.36E-0
Trichloroethane, 1,1,1-	1.1E-03	Ib/Mgal	1	3.39E-05	1.13E-07	3.39E-05	1.13E-07	3.39E-05	1.13E-0
Naphthalene	3.0E-06	Ib/MM8tu	1	1.26E-05	4.20E-08	1.26E-05	4.20E-08	1.26E-05	4.20E-0
Nickel		Ib/Mgal_	 	9.30E-11	3.10E-13	9.30E-11	3.10E-13	9.30E-11	3.10E-
Octachlorodibenzodloxin	3.1E-09	lb/Mgal	1	3.15E-07	1 05E-09	3.15E-07	1.05E-09	3.15E-07	1.05E-
Phenanthrene	1.1E-05		1 -	1.2BE-07	4.25E-10	1.28E-07	4.25E-10	1.28E-07	4.25E-
Pyrene	4.3E-06	lb/Mgal	1	6.30E-05	2.10E-07	6.30E-05	2.10E-07	6 30E-05	2.10E-
Selenium compounds	1.5E-05	lb/MMBtu			6.20E-07	1.86E-04	6.20E-07	1.86E-04	6.20E-
Toluene	6 2E-03	lb/Mgal	1	1.86E-04		3.27E-06	1.09E-08	3 27E-06	1.09E-
Xylene	1:1E-04	lb/Mgal	1	3.27E-06_	1.09E-08	4.4			
Zinc	4 0E-06	lb/MMBtu	11	1_68E-05	5.60E-08	1 6BE-05	5 60E-08	1.68E-05	5 60E-
Tab	I HAP Emissions (Di	legal Front Co	Cooltandon	1.48E-03	4.93E-06	1.48E-03	4.93E-06	1.48E-03	4.93E-

Notes:.

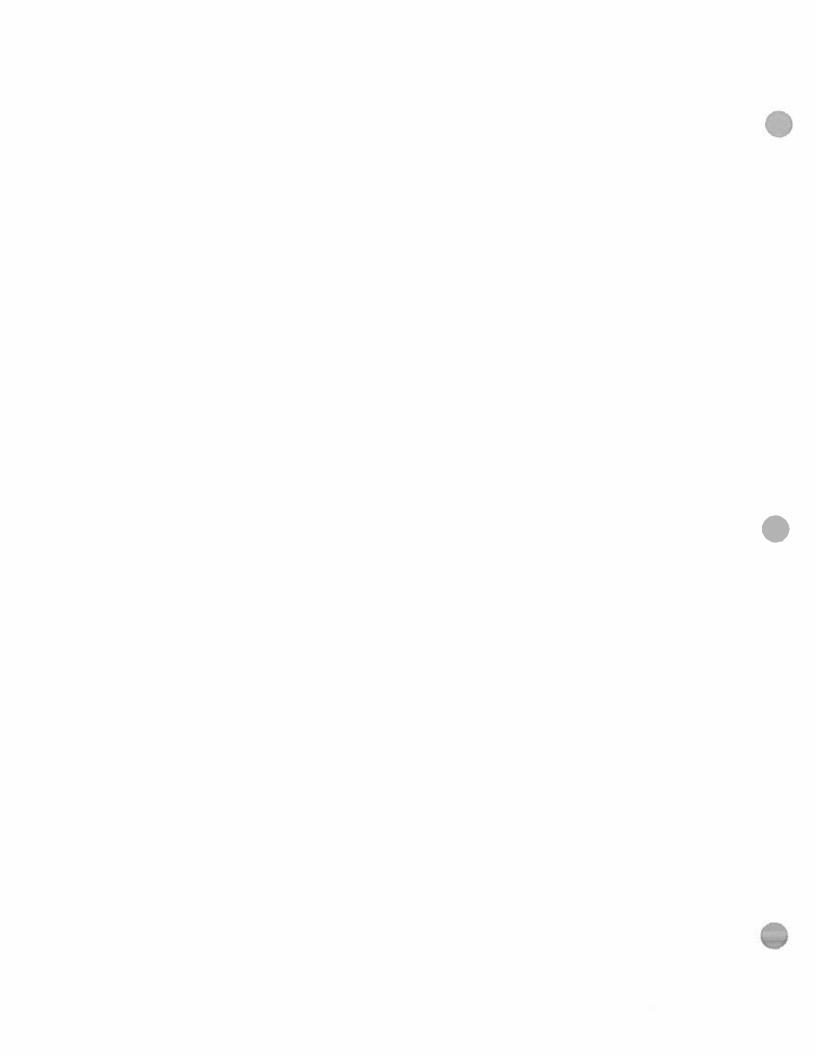

1 CO, NO_X, SO₂, PM, and VOC emission rates based on AP-42, Chapter 1.3 - Fuel Oil Combustion, 5/10 for distillate fuel oil combustion.

TABLE 5 POTENTIAL EMISSIONS - FURNACE BYPASS (COLD START-UP) ENVIVA PELLETS GREENWOOD, LLC

Abbraviations:
CH₄ - methane
CO - carbon monoxide
CO2 - carbon dioxide
CO2e - carbon dioxide equivalent
HAP - hazardous air pollutant
hr - hour
lb - pound
MMBtu - Million British thermal units
NO_x - nitrogen oxides

 N_2O - nitrous oxide ODT - oven dried tons PM - particulate matter PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns PM_{2.8} - particulate matter with an aerodynamic diameter of 2.5 microns or less SO_2 - suffur dioxide tpy - tons per year VOC - votatile organic compound yr - year

POTENTIAL EMISSIONS - FURNACE BYPASS (IDLE MODE) ENVIVA PELLETS GREENWOOD, LLC TABLE 8

Calculation Basis

12 MMBtu/hr	6,000 MMBtu/yr	500 hr/vr
Hourly Heat Input Capacity	Annual Heat Input Capacity	Hours of Operation

Potential Criteria Pollutant Emissions

	Uncontrolled		Uncont	Uncontrolled & Unlimited	Contro	Controlled & Unlimited	Controlled & Limited	& Limited
Pollutant	Emission	Units	Emiss	Emissions ³	Emiss	Emissions ³	Emission	Emissions (PTE)
	Factor		Max (lb/hr)	Annual (tpy)	Max (Ib/hr)	Annual (tpy)	Max (ib/hr)	Annual (tpy)
03	09:0	Ib/WMBtu ²	7.20	31,5	7.20	31.5	7.20	1.80
NOx	0.22	Ib/MMBtu²	2.64	11.6	2.64	11.6	2.64	99'0
50,	0.025	Ib/MMBtu²	0.30	1,31	0.30	1.314	0.30	0.075
voc	0.017	Ib/MMBtu²	0.20	68.0	0.20	0.89	0.20	0.051
Total PM	0.58	1b/MMBtu²	6.92	30.3	26'9	30,33	6,92	1.73
Total PM ₁₀	0.52	Ib/MMBtu ²	6.20	27.2	6,20	27,17	6.20	1.55
Total PM, s	0.45	Ib/MMBtu²	5.36	23.5	5.36	23.49	5.36	1.34

Mates:.
. Idle mode is defined as operation at up to a maximum heat input rate of 12 MMBtu/hr. The furnace may operate in idle mode for up to 500 hr/yr.

² CO, NO₂, SO₂, PM, PM₁₀, PM₁₄, and VOC emission rates based on AP.42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fred boilers. PM₁₀ and PM₁₅ factors equal to the sum of the filterable and condonsable factors from Table 1.6-1. VOC emission factor excludes formaldehyde.

¹ Unlimited emissions are based on the maximum hourty heat input for this operating mode at 8,760 hours/year. Limited emissions are based on the proposed annual operating hour limit.

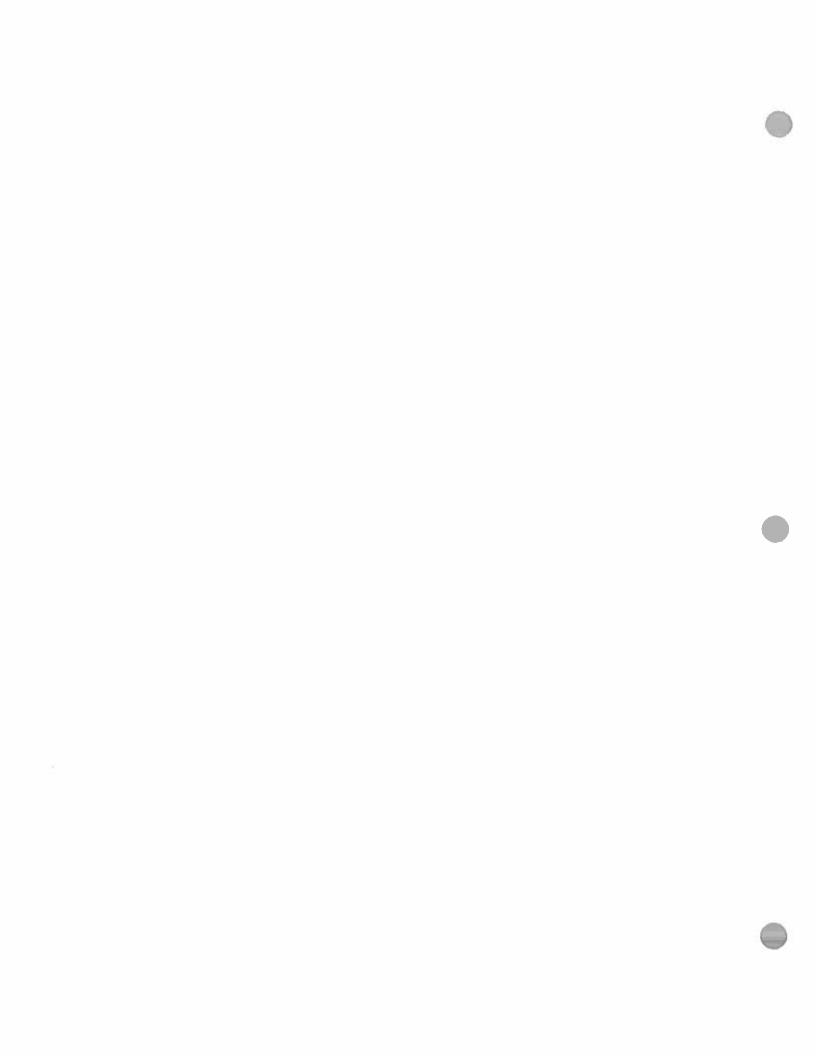
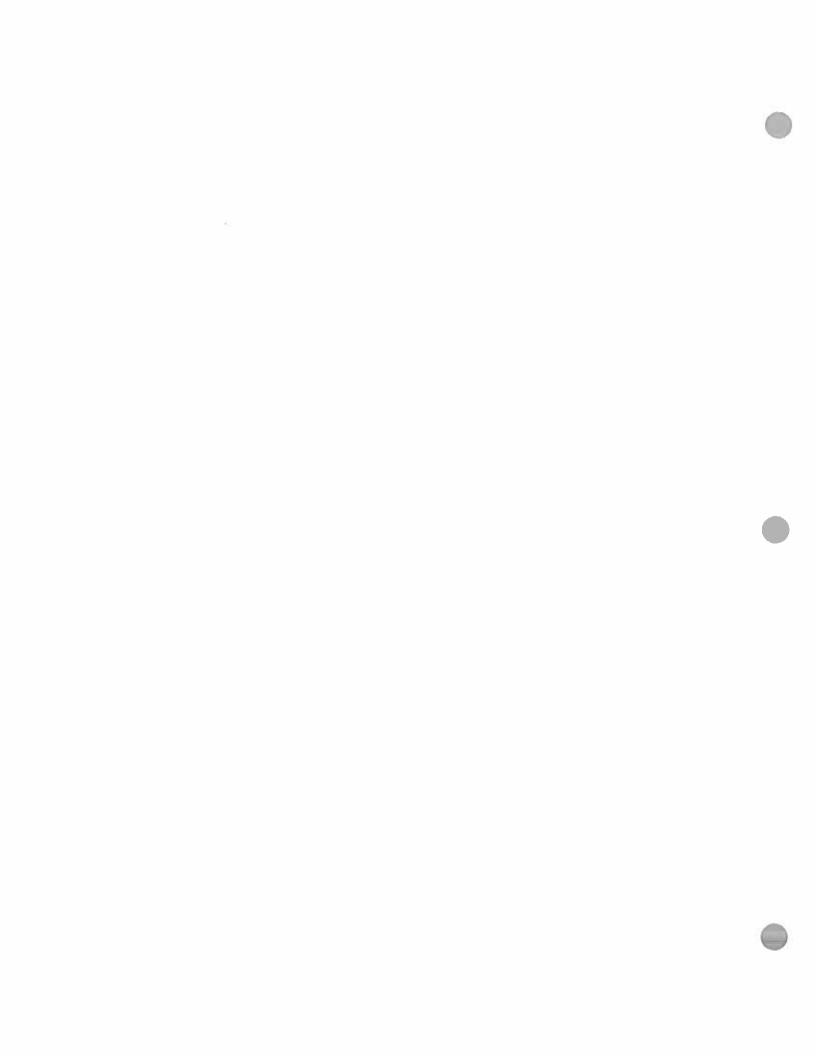



TABLE 6
POTENTIAL EMISSIONS - FURNACE BYPASS (IDLE MODE)'
ENVIVA PELLETS GREENWOOD, LLC

				Uncontr	Uncontrolled &	Controlled &			
Pollutant	Uncontrolled Emission	Units	Footnote	Unlimited Emissions ²	nited ions ²	Unlin	Unlimited Emissions ²	Controlled & Limited Emissions (PTE) ²	entrolled & Limited Emissions (PTE) ²
	Factor			(lb/hr)	(tpy)	(lb/hr)	Annuai (tpy)	(tb/hr)	(kda)
Acetaldehyde	8.30E-04	Ib/MMBtu	-	9.96E-03	4.36E-02	9.96E-03	4.36E-02	9.96E-03	2.49E-03
Acrolein	4.00E-03	lb/MMBtu	-	4.80E-02	2.10E-01	4.B0E-02	2.10E-01	4.80E-02	1.205-02
Formaldehyde	4,40E-03	Ib/MMBtu	-	5.2BE-02	2.31E-01	5.28E-02	2.31E-01	5.28E-02	1,325-02
Phenol	5.10£-05	lb/MMBtu	1	6.12E-04	2.68E-03	6.12E-04	2.68E-03	6.12E-04	1,53E-04
Propionaldehyde	6.10E-05	Ib/MMBtu	1	7.32E-04	3.21E-03	7.32E-04	3.21E-03	7.32E-04	1.83E-04
Acetophenone	3.2E-09	Ib/MMBtu	1	3.84E-08	1.68E-07	3.84E-08	1.68E-07	3.84E-08	9.60E-09
Antimony and compounds	7.9E-06	Ib/MMBtu	1	9.48E-05	4.15E-04	9,48E-05	4,15E-04	9.48E-05	2.37E-05
Arsenic	2.2E-05	Ib/MMBtu	-	2.64E-04	1,16E-03	2.64E-04	1,16E-03	2.64E-04	6.60E-05
Benzo(a)pyrene	2.6E-06	Ib/MMBtu	-	3.12E-05	1.37E-04	3.12E-05	1.37E-04	3.12E-05	7.806-06
Beryllium	1,1E-06	1b/MMBtu	-	1.32E-05	5.78E-05	1.32E-05	5.78E-05	1.32E-05	3,305-06
Cadmium	4,1E-06	Ib/MMBtu	-	4.92E-05	2,15E-04	4.92E-05	2.15E-04	4.92E-05	1.23E-05
Carbon tetrachloride	4.5E-05	Ib/MMBtu	-	5.40E-04	2.37E-03	5.40E-04	2.37E-03	5.40E-04	1.35E-04
Chlorine	7.9E-04	Ib/MMBtu	-	9.48E-03	4,15E-02	9.48E-03	4,15E-02	9.48E-03	2.37E-03
Сиюторендене	3,3E-05	Ib/MMBtu	-	3.96E-04	1,73E-03	3.96E-04	1.73E-03	3.96E-04	9.90E-05
Chromium-Other compounds	2,1E-05	Ib/MMBtu	1	2,52E-04	1.105-03	2.52E-04	1,10E-03	2.52E-04	6.30E-05
Cobalt compounds	6.5E-06	Ib/MM8tu	-	7.80E-05	3.42E-04	7.B0E-05	3.42E-04	7.80E-05	1,955-05
Dinitrophenol, 2,4-	1.8E-07	Ib/MMBtu	1	2.16E-06	9.46E-06	2.16E-06	9.46E-06	2.16E-06	5.40E-07
Di(2-ethylhexyl)phthalate	4,7E-08	Ib/MMBtu	1	5.64E-07	2.47E-06	5.64E-07	2.47E-06	5.64E-07	1,41E-07
Ethyl benzene	3.1E-05	Ib/MMBtu	1	3.72E-04	1.63E-03	3.72E-04	1.63E-03	3.72E-04	9.30E-05
Dichloroethane, 1,2-	2.9E-05	Ib/MMBtu	1	3.48E-04	1.52E-03	3.48E-04	1,52E-03	3.48E-04	8.70E-05
Hydrochloric acid	1.9E-02	Ib/MMBtu	1	2.28E-01	9.99E-01	2.28E-01	9.995-01	2.2BE-01	5.70E-02
Lead	4.8E-05	fb/MMBtu	1	5.76E-04	2,52E-03	5.76E-04	2.52E-03	5,76E-04	1,44E-04
Manganese	1.6E-03	Ib/MMBtu	ı	1,92E-02	8.41E-02	1,925-02	B.41E-02	1,92E-02	4,80E-03
Mercury	3.5E-06	Ib/MMBtu	1	4,20E-05	1,84E-04	4,20E-05	1,84E-04	4,20E-05	1.05E-05
Methyl bromide	1.5E-05	Ib/MMBtu	1	1.80E-04	7.88E-04	1,80E-04	7.88E-04	1,80E-04	4,50E-05
Methyl chloride	2.3E-05	Ib/MMBtu	1	2,76E-04	1.21E-03	2.76E-04	1.21E-03	2,765-04	6.90E-05
Trichloroethane, 1,1,1-	3.1E-05	Ib/MMBtu	1	3.72E-04	1.63E-03	3.72E-04	1.63E-03	3.72E-04	9.30E-05
Naphthalene	9.7E-05	Ib/MMBtu	1	1.16E-03	5.10E-03	1,16E-03	5.10E-03	1,16E-03	2.91E-04
Nickel	3.3E-05	tb/MMBtu	1	3.96E-04	1,73E-03	3.96E-04	1,73E-03	3 96E-04	9.906-05
Nitrophenol, 4-	1.1E-07	Ib/MMBtu	-	1 32E-06	5.78E-06	1.32E-06	5.78E-06	1.32E-06	3.30E-07
Pentachlorophenol	5.1E-08	Ib/MMBtu	-	6.12E-07	2.68E-06	6.12E-07	2.68E-06	6.12E-07	1.53E-07
Perchloroethylene	3.BE-05	Ib/MMBtu	-	4.56E-04	2.00E-03	4.56E-04	-	4.56E-04	1,14E-04
Phosphorus metal, yellow or white	2.7E-05	Ib/MMBtu	-	3.24E-04	1,42E-03	3.24E-04	_	3.24E-04	8,10E-05
Polychlorinated biphenyls	8.2E-09	Ib/MMBtu	-	9.78E-08	4,28E-07	9.78E-08	-	9.78E-08	2,45E-08
Polycyclic Organic Matter	1,3E-04	Ib/MMBtu	-	1.50E-03	6.57E-03	1.50E-03	6.57E-03	1.50E-03	3.75E-04
Dichloropropane, 1,2-	3.3E-05	Ib/MMBtu	-	3.96E-04	1,73E-03	3.96E-04	1,73E-03	3.96E-04	9.90E-05
Selenium compounds	2.8E-06	tb/MMBtu	-	3.36E-05	1.47E-04	3.36E-05	-	3.36E-05	8.40E-06
Trichloroethylene	3.0E-05	Ib/MMBtu	-	3.60E-04	1.58E-03	3.60E-04	1.58E-03	4-	9.005-05
Trichtorophenol, 2.4,6-	2.2E-08	Ib/MMBtu	-	2.64E-07	1.16E-06	2.64E-07	╌	٠.	80-309 9
Vinyl chloride	1.BE-05	Ib/MMBtu	-	2.16E-04	9.46E-04	2,16E-04	9.46E-04	2.16E-04	5 40E-05
	Tabel 1380 Serietians (Statester Combustion)		- morphology	ᄮ	4 85	87.0	1 0 0	╬	7000

TABLE 6 POTENTIAL EMISSIONS - FURNACE BYPASS (IDLE MODE) ENVIVA PELLETS GREENWOOD, LLC

Notest:

1 Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03,

2 Untimited emissions are based on the maximum hourty heat input for this operating mode at 8,760 hours/year. Limited emissions are based on the proposed armual operating hour limit.

Abbraviations.

CH₄. methane

CO - carbon monoxide

CO₂ - carbon dioxide

MAR - kingram

R -

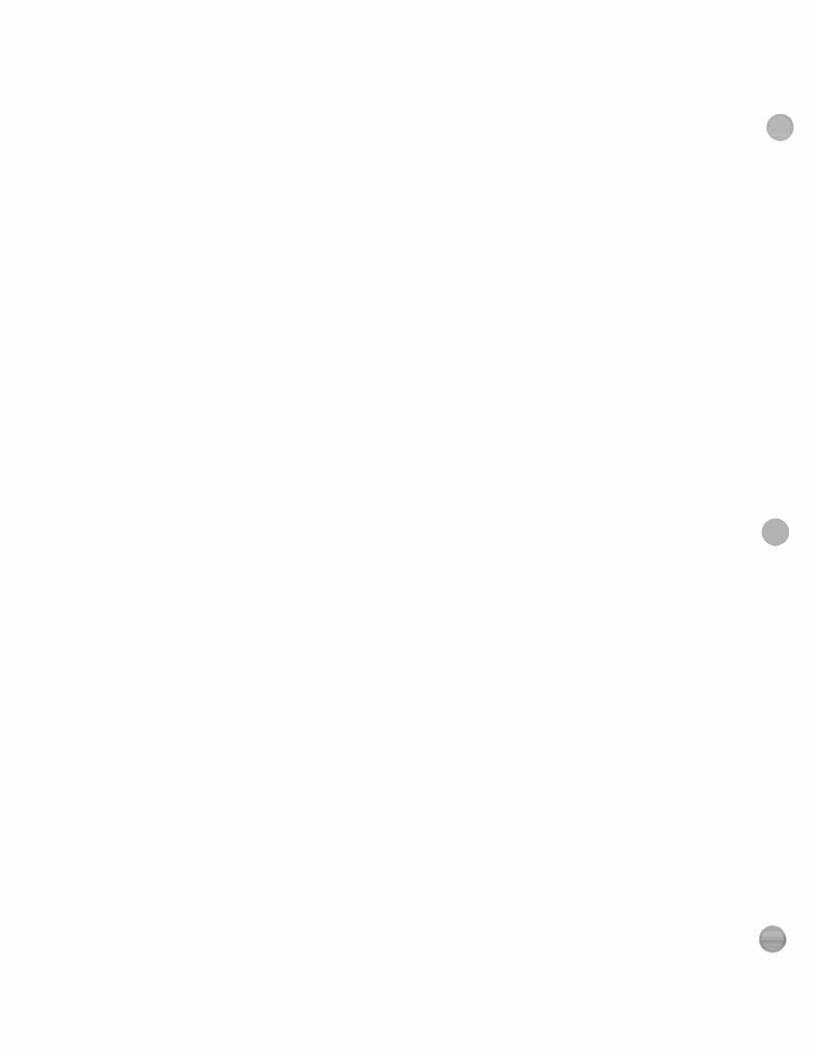
N₂O - nirrous oxide

ODT - oven dried tors

PM - particulate matter

PM₁₀ - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns


PM₁₀ - sulfur dioxide

tpy - tors per year

VCC - volatile organic compound

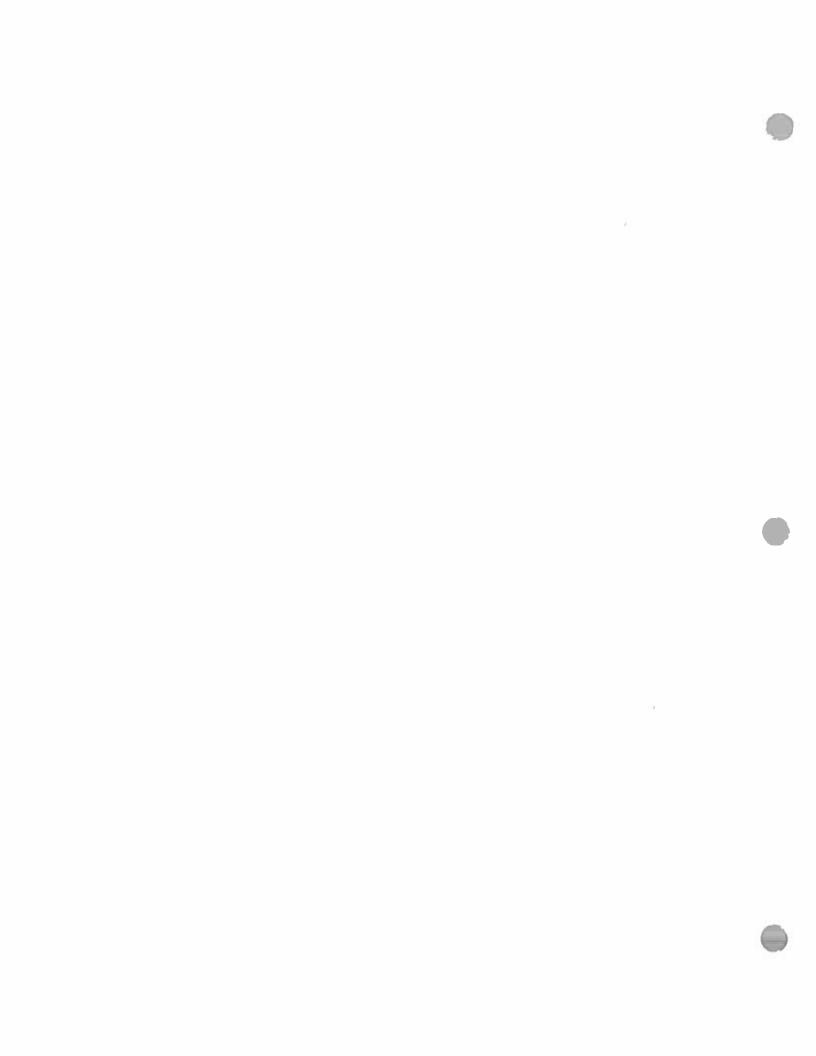
yr - year

Page 15 of 41

TABLE 7 DRYER DUCT BURNER POTENTIAL EMISSIONS ENVIVA PELLETS GREENWOOD, LLC

Duct Burner Inputs

.u/hr


Potential Criteria Pollutant Emissions - Natural Gas Combustion

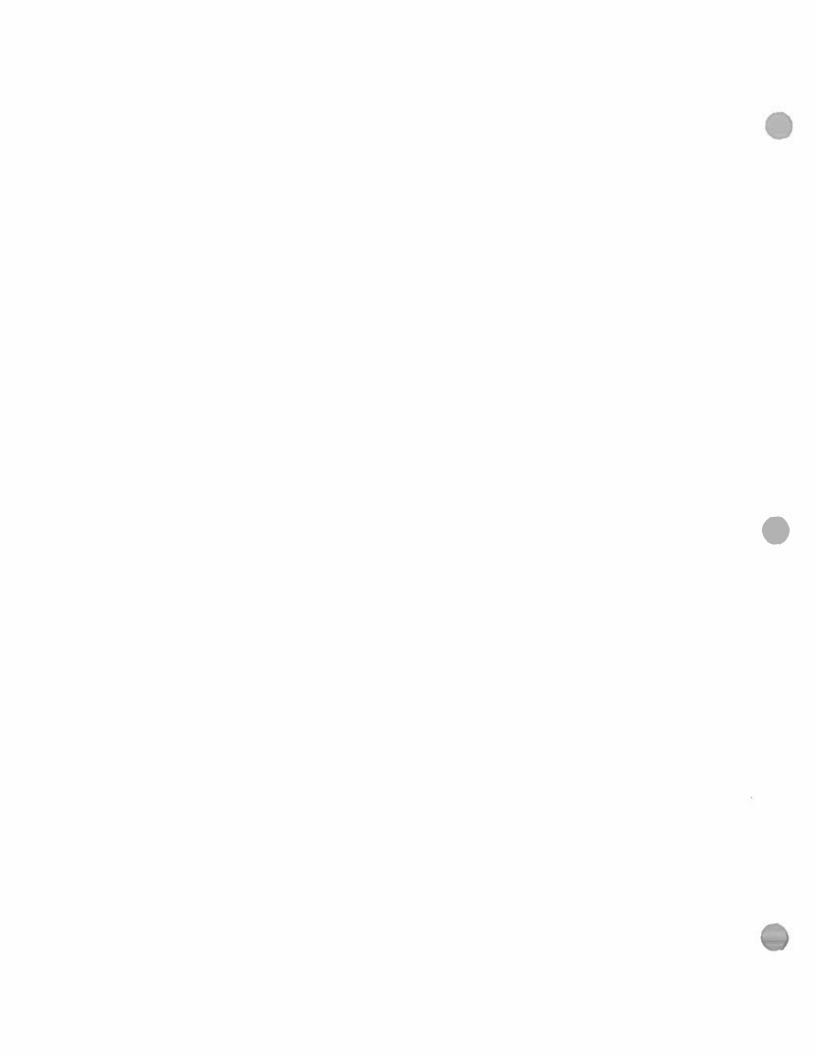
Pollutant	Emission	Units	Footnote	Emission	ıs (PTE)²
	Factor		1	(lb/hr)	(tpy)
co	84.0	lb/MMscf	1	0.41	1.80
NO _x	100.0	lb/MMscf	1	0.49	2,15
SO ₂	0.60	lb/MMscf	1	0.0029	0.013
VOC	5.50	lb/MMscf	1	0.027	0.12
PM/PM ₁₀ /PM _{2 5} Condensable	5.70	lb/MMscf	1	0.028	0.12
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	1	0.0093	0.041
Total PM/PM ₁₀ /PM _{2.5}				0.037	0.16

Notes:

¹ Emission factors for natural gas combustion from AP-42 Section 1.4 - Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.

No control devices or limitations are proposed for this unit.

TABLE 7 DRYER DUCT BURNER POTENTIAL EMISSIONS ENVIVA PELLETS GREENWOOD, LLC


Potential HAP and TAP Emissions

Pollutant	HAP	voc	Emission	Units	Footnote	Emission	ns (PTE)²
FUHLLANK			Factor			(lb/hr)	(tpy)
2-Methylnaphthalene	Y	Y	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-07
3-Methylchloranthrene	Y	Y	1.8E-06	lb/MMscf	1	8.BE-09	3.9E-08
7,12-Dimethylbenz(a)anthracene	Y	Y	1.6E-05	lb/MMscf	1	7.8E-08	3.4E-07
Acenaphthene	Y	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-06
Acenaphthylene	Υ	Y	1.8E-06	lb/MMscf	1	8.8E-09	3 9E-08
Acetaldehyde	Y	Υ	1.5E-05	lb/MMscf	1	7.5E-08	3.3E-07
Acrolein	Y	Υ	1 8E-05	lb/MMscf	1	8 8E-08	3.9E-07
Ammonia	N	N	3.2	lb/MMscf	1	1.6E-02	6.9E-02
Anthracene	Y	Y	2.4E-06	lb/MMscf	1 _	1.2E-08	5.2E-08
Arsenic	Y	N	2.0E-04	lb/MMscf	1	9.8E-07	4.3E-06
Benz(a)anthracene	Y	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzene	Y	Υ	2.1E-03	lb/MMscf	. 1	1.0E-05	4.5E-05
Benzo(a)pyrene	Y	Y	1.2E-06	lb/MMscf	1	5.9E-09	2.6E-08
Benzo(b)fluoranthene	Y	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Benzo(q,h,i)perylene	Y	Y	1.2E-06	lb/MMscf	1 _	5.9E-09	2.6E-08
Benzo(k)fluoranthene	Y	Y	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Beryllium	Y	N	1.2E-05	lb/MMscf	1	5.9E-08	2.6E-07
Cadmium	Y	N	1.1E-03	lb/MMscf	1	5.4E-06	2.4E-05
Chromium VI	Υ	N	1.4E-03	lb/MMscf	1	6.9E-06	3.0E-05
Chrysene	Y	Υ	1.8E-06	lb/MMscf	1	8.8E-09	3.9E-08
Cobalt compounds	Y	N	8.4E-05	lb/MMscf	1	4.1E-07	1.8E-06
Dibenzo(a,h)anthracene	Υ -	Y	1.2E-06	lb/MMscf	1	5.9E-09	2,6E-08
Dichlorobenzene	Y	Y	1.2E-03	lb/MMscf	1	5.9E-06	2.6E-05
Fluoranthene	Y	Y	3.0E-06	lb/MMscf	1	1.5E-08	6.4E-08
Fluorene	Υ Υ	Y	2.8E-06	lb/MMscf	1	1.4E-0B	6.0E-08
Formaldehyde	Y	Y	7.5E-02	lb/MMscf	1	3.7E-04	1.6E-03
Hexane	Y	Y	1.8	lb/MMscf	1	8.8E-03	3.9E-0
Indeno(1,2,3-cd)pyrene	Y	Y	1.8E-06	lb/MMscf	. 1	8.BE-09	3.9E-0
Lead	Y	N	5.0E-04	lb/MMscf	1	2.5E-06	1.1E-0
Manganese	Y	N	3.8E-04	lb/MMscf	1	1.9E-06	8.2E-0
Mercury	Y	N	2 6E-04	lb/MMscf	1	1:3E-06	5.6E-0
Naphthalene	γ	Y	6.1E-04	lb/MMscf	1	3.0E+06	1.3E-0
Nickel	Y	N	2.1E-03	lb/MMscf	1	1.0E-05	4.5E-0
Phenanthrene	Y	Y	1.7E-05	lb/MMscf	1	8.3E-08	3.7E-0
Pyrene	Y	Y	5.0E-06	lb/MMscf	1	2.5E-08	1.1E-0
Selenium compounds	T V	N	2.4E-05	lb/MMscf	1	1.2E-07	5.2E-0
Toluene		Y	3.4E-03	lb/MMscf	1	1.7E-05	7.3E-0
TOILLETTE		<u> </u>			Emissions		0.041

Notes:

¹ Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 • Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

² No control devices or limitations are proposed for this unit.

TABLE 7 DRYER DUCT BURNER POTENTIAL EMISSIONS ENVIVA PELLETS GREENWOOD, LLC

Abbreviations:

CAS - chemical abstract service

CH₄ - methane

CO - carbon monoxide

CO2 - carbon dioxide

CO₂e - carbon dioxide equivalent

HAP - hazardous air poliutant

hr - hour

kg - kilogram

lb - pound

MMBtu - Million British thermal units

NC - North Carolina

NO_x - nitrogen oxides

N₂O - nitrous oxide

ODT - oven dried tons

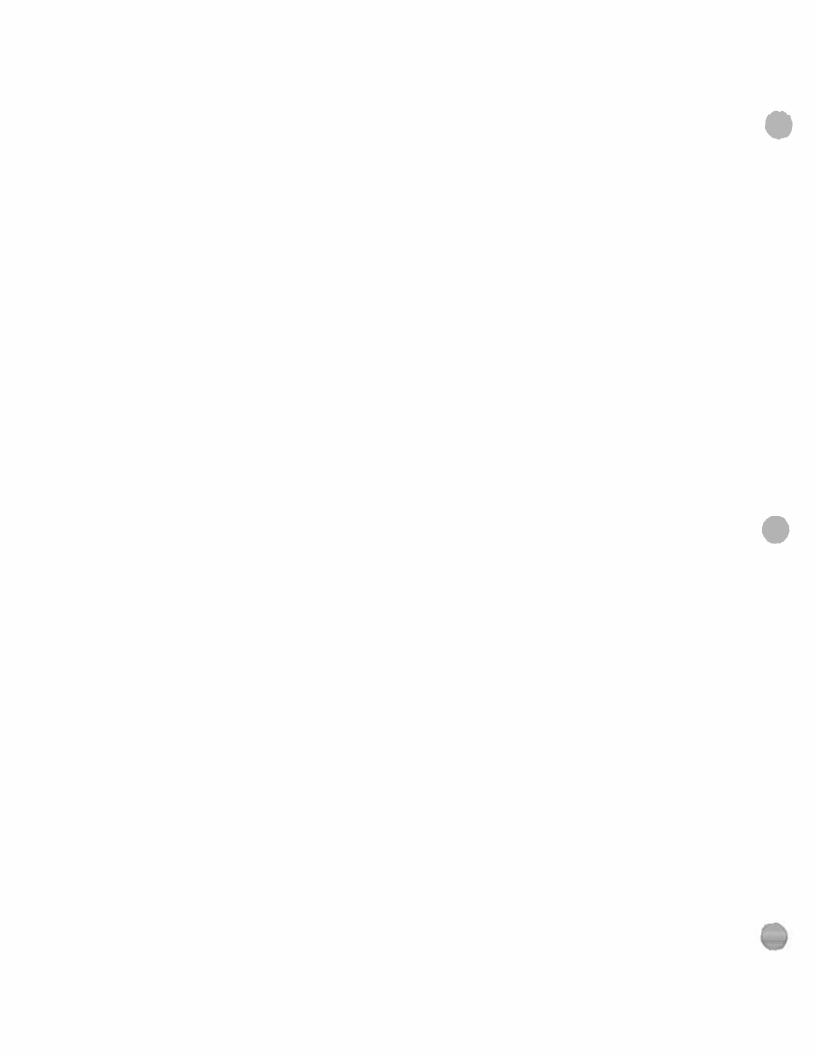
PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

RTO - regenerative thermal oxidizer

SO₂ - sulfur dioxide


TAP - toxic air pollutant

tpy - tons per year

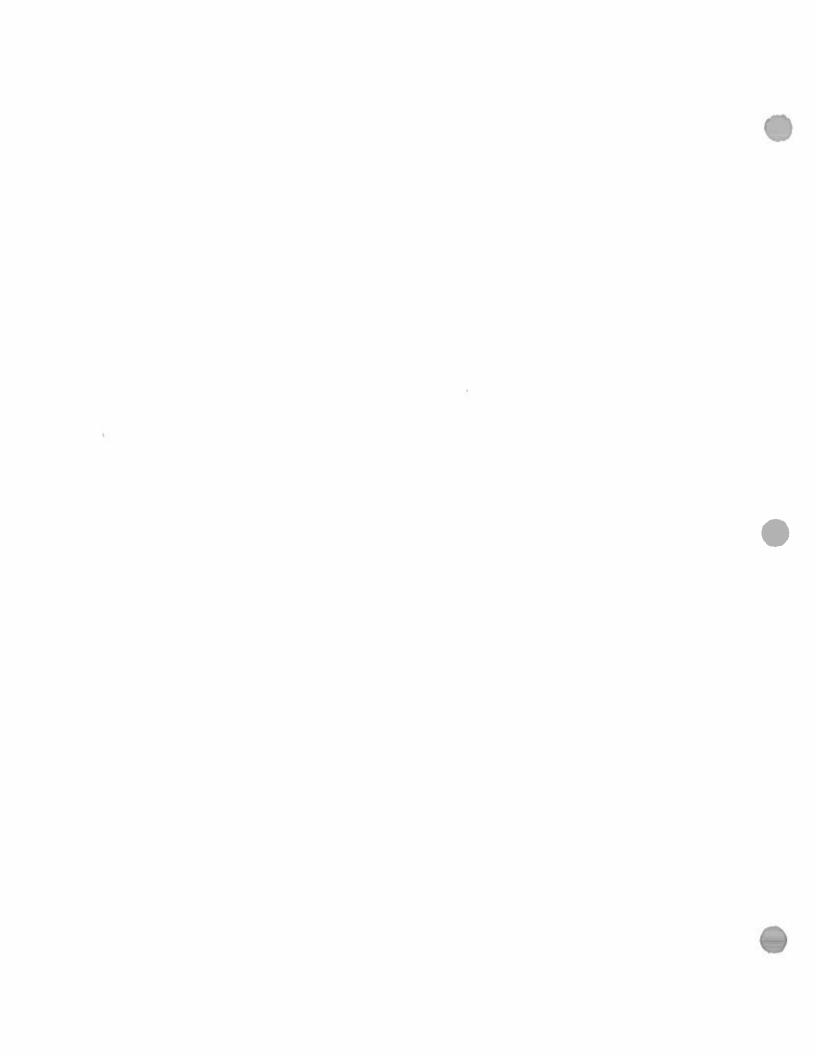
VOC - volatile organic compound

WESP - wet electrostatic precipitator

yr - year

TABLE 8 POTENTIAL DRY HAMMERMILL EMISSIONS AT OUTLET OF RTO-1 STACK ENVIVA PELLETS GREENWOOD, LLC

Calculation Basis


	1
Total Plant Throughput	660,000 ODT/yr
% of Total Throughput to the Hammermills	100%
Hours of Operation	8,760 hr/yr
VOC/HAP Control Efficiency	95.0%
Particulate Matter Control Efficiency	80.06
Hammermills Annual Throughput	660,000 ODT/yr
Hammermills Hourly Throughput	88 ODT/hr
Cyclofilter Control Efficiency	%66

Potential PM, VOC and HAP Emissions

Pollutant	CAS No.	НАР	VOC	Emission Factor ¹	Uncontrolled Unlimited Emissions ⁴	Incontrolled & Unlimited Emissions ⁴	Controlled & Unlimited Emissions*	illed & nited ions ⁴	Controlled & Limited Emissions (PTE) ^{2,4}	& Limited : (PTE) ^{2,4}
				(lb/oDT)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
Acetaldehyde	75-07-0	>	>	0.0072	0.64	2.79	0.032	0.14	0.032	0.12
Acrolein	107-02-8	>	>	0.011	96.0	4.19	0.048	0.21	0.048	0.18
Formaldehyde	20-00-0	>	>	0.00024	0.021	0.093	0.0011	0.0046	0.0011	0.0040
Methanol	67-56-1	٨	٨	0.0059	0.52	2.27	0.026	11.0	0.03	0.10
Phenol	108-95-2	Å	٨	0.0028	0.24	1.07	0.012	0.053	0.012	0.045
Propionaldehyde	123-38-6	>	٨	0.012	1.09	4.79	0.055	0.24	0.055	0.20
			Total HAP	Fotal HAP Emissions:	3.47	15.2	0.17	0.76	0.17	0.65
Total VOC (as propane)	•••	-	ı ,	1.23	109	477	5.44	23.8	5.44	20.3
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensable)		E	122	0.17	1,506	6,596	15.1	66.0	15.1	56.3

Thermal Generated Potential Criteria Pollutant Emissions

1.8E-02 MMBtu/lb	407 tons/yr	109 lb/hr	15,038 MMBtu/yr	2.0 MMBtu/hr
Maximum high heating value of VOC constituents	Uncontrolled VOC emissions	Uncontrolled VOC emissions	Heat input of uncontrolled VOC emissions	Heat input of uncontrolled VOC emissions

POTENTIAL DRY HAMMERMILL EMISSIONS AT OUTLET OF RTO-1 STACK ENVIVA PELLETS GREENWOOD, LLC TABLE 8

mission Units	Uncontrolled & Unlimited Emissions	lled & ted	Controlled & Unlimited Emissions ⁴		Controlled & Limited Emissions (PTE)*	& Limited s (PTE) ⁴
		Annual	Max	Annual	Max	Annual
	(lb/hr)	\neg			(lb/hr)	(tpy)
8.2E-02 Ib/MMBtu	00.00	0.00	0.17	0.73	0.17	0.62
9.8E-02 Ib/MMBtu	00.00	0.00	0.20	0.86	0.20	0.74
actor	MBtu WBtu	(1b/hr) 0.00 0.00	(lb/hr) (tpy) 0.00 0.00 0.00 0.00	Max Annual Max (lb/hr) (tpy) (lb/hr) ((lb/hr) (tpy) (lb/hr) (cpy) (lb/hr) (cpy) (lb/hr) (cpy) (cpy	Max Annual Max Annual (1b/hr) (tpy) (1b/hr) (tpy) (1b/hr) (tpy) (0.00 0.00 0.17 0.73 0.00 0.00 0.20 0.86

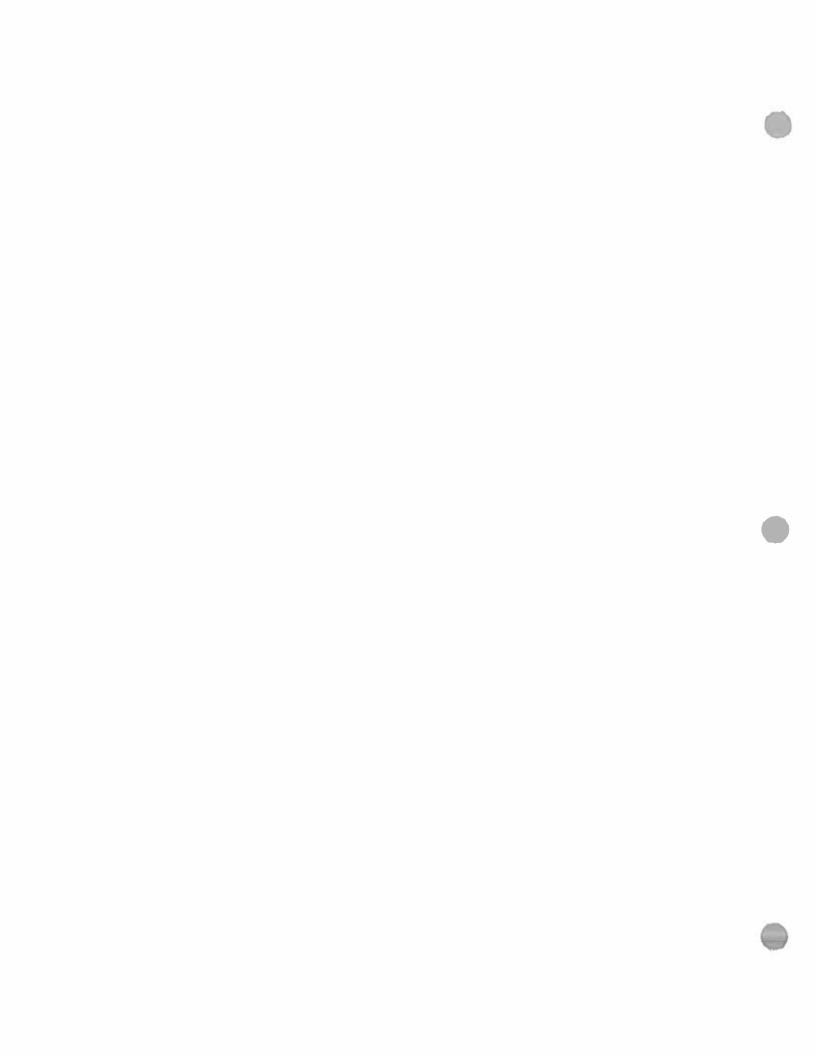
¹ Emission factors were derived based on stack testing data for the Greenwood plant and comparable Enviva facilities and include contingency. The emission factors represent uncontrolled emissions with the exception of the PM factor, which is controlled.

2. VOC and HAP emissions controlled by furnace or RTO1 at 95%

3. CO and NO_x emission factors are from AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98 for small boilers.

Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on proposed annual throughput. Controlled emissions are based on proposed short-term and annual throughputs and application of control device efficiencies.

Abbreviations:
CAS - chemical abstract service
HAP - hazardous air poliutant


hr - hour

punod - qi

ODT - oven dried tons

TAP - toxic air pollutant

tpy - tons per year VOC - volatile organic compound yr - year

POTENTIAL PELLET PRESS AND COOLER EMISSIONS AT OUTLET OF RTO-2/RCO-1 STACK **ENVIVA PELLETS GREENWOOD, LLC** TABLE 9

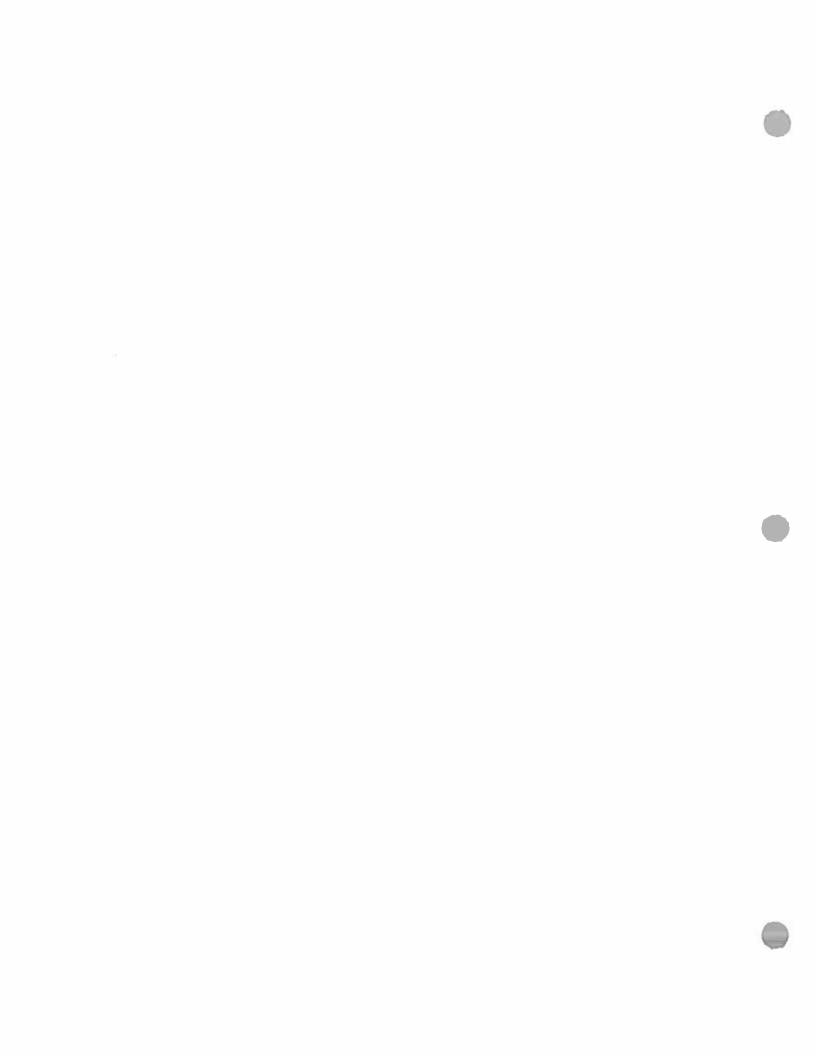
Calculation Basis		
Annual Throughput	330,000 ODT/yr	ODT/yr
Hourly Throughput	45	45 ODT/hr
Hours of Operation	8,760 hr/yr	hr/yr
Number of Burners	1	burners
RTO/RCO Burner Rating	5.2	5.2 MMBtu/hr
RTO/RCO Control Efficiency	%56	
Baghouse Control Efficiency	%66	

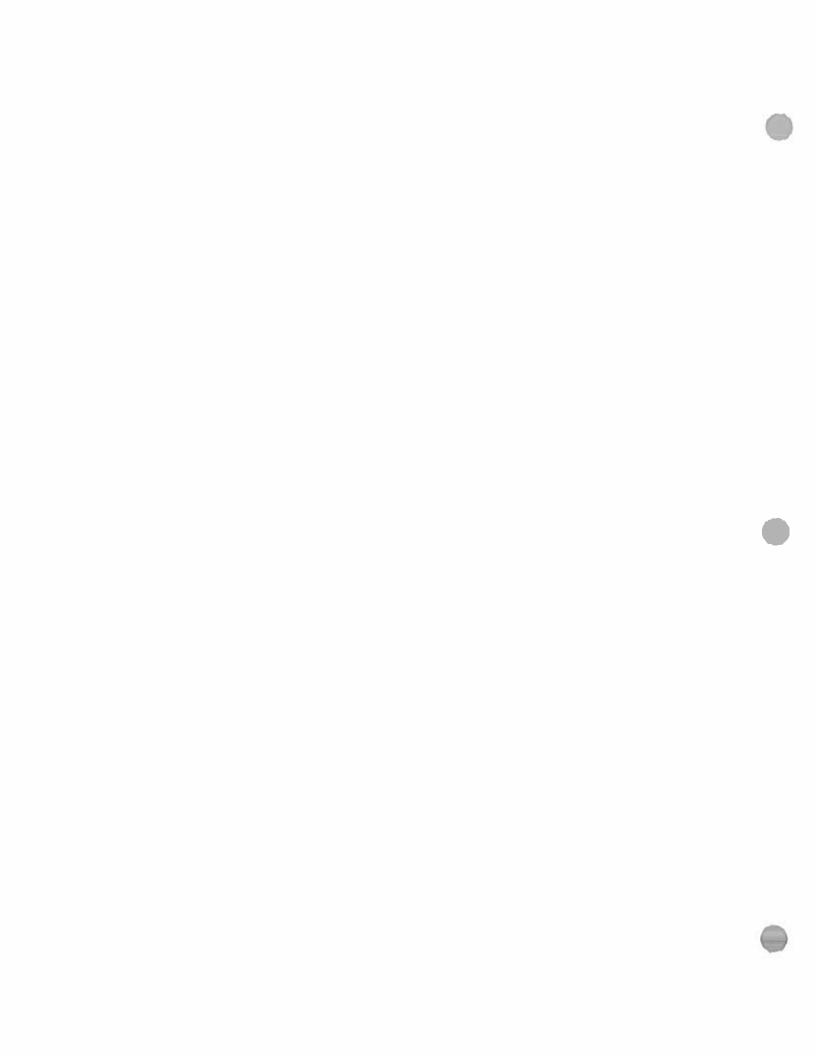
Pellet Mill and Cooler Potential CO, NOx, VOC and HAP Emissions

				Funianian	Uncont	Uncontrolled &	Controlled &	3 pelic	Controlled 8.1 imited	P. I imited
Pollutant	CAS No.	HAP	VOC	Factor ¹	Unlimited Emissions ⁴	Unlimited Emissions*	Unlimited	Unlimited Emissions ⁴	Emissions (PTE) ^{2,4}	(PTE)2.4
				100	Max	Annual	Max	Annual	Max	Annual
				(100/01)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Acetaldehyde	75-07-0	*	>	0.034	1.52	6.68	9/0 0	0.33	0.076	0.28
Acrolein	107-02-8	\	*	0.050	2.26	9.91	0.11	0.50	0.11	0.41
Formaldehyde	50-00-0	>	>	0.13	5.77	25.3	0.29	1.26	0.29	1.05
Methanol	67-56-1	٨	٨	0900:0	0.27	1.19	0.014	0.059	0.014	0.049
Phenol	108-95-2	٨	٨	0.025	1.14	5.01	0.057	0.25	0.057	0.21
Propionaldehyde	123-38-6	^	٨	0.015	99.0	2.90	0.033	0.14	0.033	0.12
			Total HAP	Total HAP Emissions	11.6	50.9	0.58	2.55	0.58	2.12
Total VOC (as propane)	***	1	٨	2.97	135	980	6.74	29.5	6.74	24.5
00	250		77	0.11	00.0	0.0	4.84	21.2	4.84	17.6
NOx	***			0.018	00'0	0.00	0.82	3.58	0.82	2.97
Total PM	74.	1	100	s	428.57	1877.14	4.29	18.77	4.29	18.77
Total PM ₁₀	200	22	4.4	5	111.86	489.93	1.12	4.90	1,12	4.90
Total PM2 5	**	77	-	0.015	69.13	251.46	0.69	2.51	69.0	2.51

- Notes:

 Emission factors were derived based on stack testing data from the Greenwood plant and comparable Enviva facilities, and include contingency. The emission factors represent
- 2 A 95.0% control efficiency for the RCO is applied to VOC and organic HAP emissions.
 3 Emissions from the pellet mills and pellet coolers are controlled by an RCO that operates primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there is no impact on emissions when operating in thermal mode.
- Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on proposed annual throughput. Controlled emissions are based on proposed short-term and annual throughputs and application of control device efficiencies.
- 5 PM emissions based on an outlet grain loading of 0.010 gr/scf and an exhaust flow rate of 50,000 scfm. PM₁₀ emissions based on PM emissions and speciation based on data for similar
 - PM_{2.5} emissions factor represents post-control emissions and includes both process and combustion emissions with contingency.




TABLE 9
POTENTIAL PELLET PRESS AND COOLER EMISSIONS AT OUTLET OF RTO-2/RCO-1 STACK
ENVIVA PELLETS GREENWOOD, LLC

Natural Gas Combustion Potential Criteria Pollutant Emissions

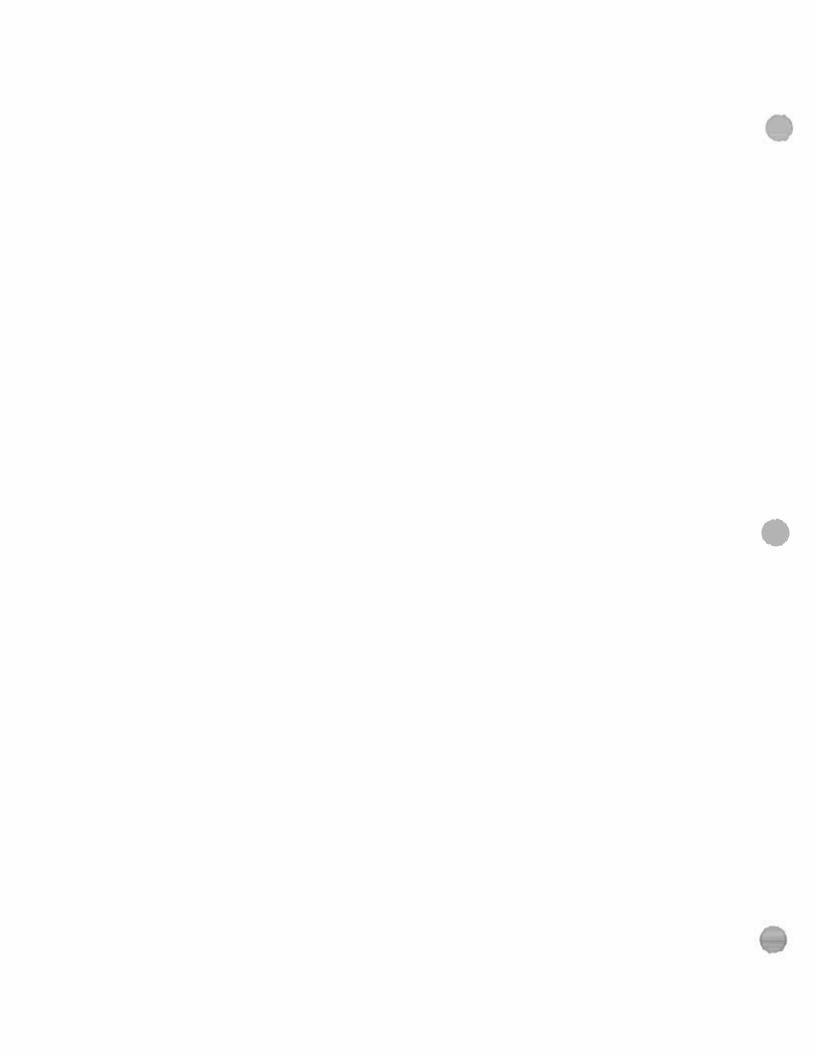
	Emission	:	Emissions (PTE)	s (PTE)
Pollutant	Factor1	Units	Max (lb/hr)	Annual (tpy)
SO ₂	5.9E.04	lb/MMBtu	0.0031	0.013
Total PM	7.5E-03	Ib/MMBtu	0.039	0.17
Total PM ₁₀	7.5E-03	Ib/MMBtu	0.039	0.17

Natural Gas Combustion Potential HAP and TAP Emissions

Pollutant	НАР	VOC	Emission	Units	Footnote	Emissions (PTE) ³	s (PTE) ³
						Max	Annual
		i				(ID/DL)	7
2-Methylnaphthalene	>	>	2.4E-05	lb/MMscf	2	1.2E.07	5.4E-07
3-Methylchloranthrene	>	>	1.BE-06	lb/MMscf	2	9.2E-09	4.0E-08
7,12-Dimethylbenz(a)anthracene	٨	٠	1.6E-05	lb/MMscf	2	8.2E-08	3.6E-07
Acenaphthene	٨	*	1.8E-06	Ib/MMscf	2	9.2E-09	4.0E-08
Acenaphthylene	Y	٨	1.8E-06	Ib/MMscf	2	9.2E-09	4.0E-08
Acetaldehyde	٨	٨	1.5E-05	Ib/MMscf	2	7.7E.08	3.4E-07
Acrolein	٨	٨	1.8E-05	Ib/MMscf	2	9.2E-08	4.0E-07
Ammonia	2	z	3.2	Ib/MMscf	2	0.016	0,071
Anthracene	٨	٨	2.4E-06	Ib/MMscf	2	1,2E-08	5.4E-08
Arsenic	λ	Z	2,0E-04	Ib/MMscf	2	1.0E-06	4.5E-06
Benz(a)anthracene	٨	٨	1.8E-06	Ib/MMscf	2	9.2E-09	4.0E-08
Benzene	٨	\	2.1E-03	lb/MMscf	- 2	1.1E-05	4.7E-05
Benzo(a)pyrene	*	٨	1.2E-06	Ib/MMscf_	2	6.1E-09	2.7E-08
Benzo(b)fluoranthene	٨	λ	1.8E-06	Ib/MMscf	2	9.2E-09	4.0E-08
Benzo(q,h,i)perylene	À	٨	1.2E-06	Ib/MMscf	2	6.1E-09	2.7E-08
Benzo(k) fluoranthene	Y	٨	1.8E-06_	Ib/MMscf	2	9.2E-09	4.0E-08
Beryllium	٨	Z	1.2E-05	Ib/MMscf	2	6.1E-08	2.7E-07
Cadmium	*	Z	1.1E-03	Ib/MMscf	2	5.6E-06	2.5E-05
Chromium VI	٨	z	1.4E-03	Ib/MMscf	2	7.1E-06	3.1E-05
Chrysene	λ	γ	1.8E-06	Ib/MMscf	2	9.2E-09	4.0E-08
Cobalt compounds	λ	2	8.4E-05	lb/MMscf	2	4.3E-07	1.9E-06
Dibenzo(a,h)anthracene	٨	٨	1.2E-06	lb/MMscf	2	6.1E-09	2.7E-08
Dichlorobenzene	٨	λ.	1.2E-03	Ib/MMscf	2	6.1E-06	2.7E-05
Fluoranthene	٨	\	3.0E-06	Ib/MMscf	2	1.5E-08	6.7E-08
Fluorene	>	۰	2.8E-06	Ib/MMscf	2	1.4E-08	6.3E-08
Formaldehyde	>	>	7.5E-02	Ib/MMscf	2	3.8E-04	1.7E-03
Hexane	>	>	1.8	lb/MMscf	2	9.2E-03	0.040
Indeno(1,2,3-cd)pyrene	>	>	1.8E-06	Ib/MMscf	2	9.2E-09	4.0E-08
Lead	>	z	5.0E-04	Ib/MMscf	2	2.5E-06	1.1E-05
Manganese	>	z	3.8E-04	ID/MMScf	2	1.9E-06	8.5E.06
Mercury	>	z	2.6E-04	Ib/MMscf	2	1.3E-06	5.8E-06
Naphthalene	>	>	6.1E-04	Ib/MMscf	2	3.1E-06	1.4E-05
Nickel	*	2	2.1E-03	Ib/MMscf	2	1.1E-05	4.7E-05
Phenanthrene	Å	٨	1.7E-05	1b/MMscf	2	8.7E-08	3.8E-07
Pyrene	>	>	5.0E-06	Ib/MMscf	2	2.5E-08	1.1E.07
Sefenium compounds	>	z	2.4E.05	Ib/MMscf	2	1.2E-07	5.4E-07
Toluene	٨	٨	3.4E-03	Ib/MMscf	2	1.7E-05	7.6E-05
				Total HAP	Total HAP Emissions	0.010	0.042

POTENTIAL PELLET PRESS AND COOLER EMISSIONS AT OUTLET OF RTO-2/RCO-1 STACK **ENVIVA PELLETS GREENWOOD, LLC** TABLE 9

Notest.


Femission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from Ib/MMscf to Ib/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Pemission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98 for small bollers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

3 No control devices or limitations are proposed for this unit.

RCD - regenerative catalytic oxidizer
RTO - regenerative thermal oxidizer
TAP - toxic air pollutant
tpy - toxic per year
VDC - vokatile organic compound
yr - year Abbreviations:

CAS - chemical abstract service
HAP - hazardous air pollutant
hr - hour
Ib - pound
NC - North Carolina
ODT - oven dried tons

POTENTIAL PELLET PRESS AND COOLER EMISSIONS AT OUTLET OF RTO-3/RCO-2 STACK **ENVIVA PELLETS GREENWOOD, LLC**

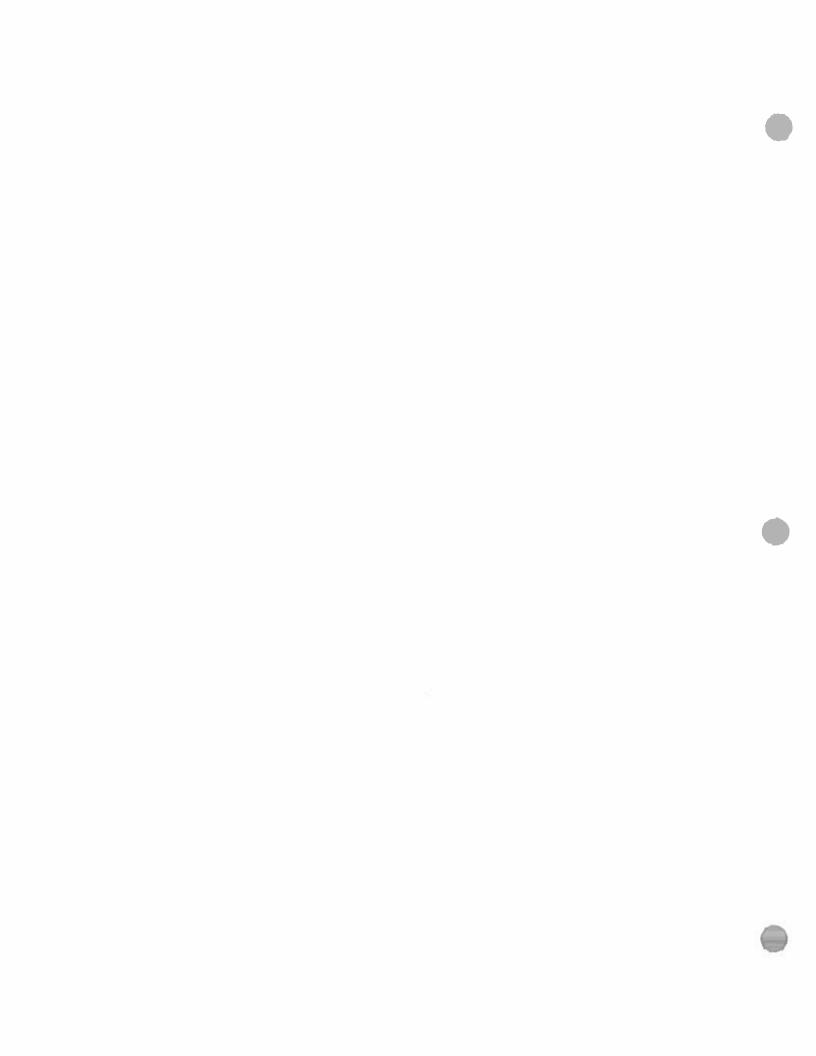
Calculation Basis		
Annual Throughput	330,000 ODT/yr	DDT/yr
Hourly Throughput	45 0	45 ODT/hr
Hours of Operation	8,760 hr/yr	ır/yr
Number of Burners	2 b	2 burners
RTO/RCO Burner Rating	5.2 N	5.2 MMBtu/hr
RTO/RCO Control Efficiency	%56	
Baghouse Control Efficiency	%66	

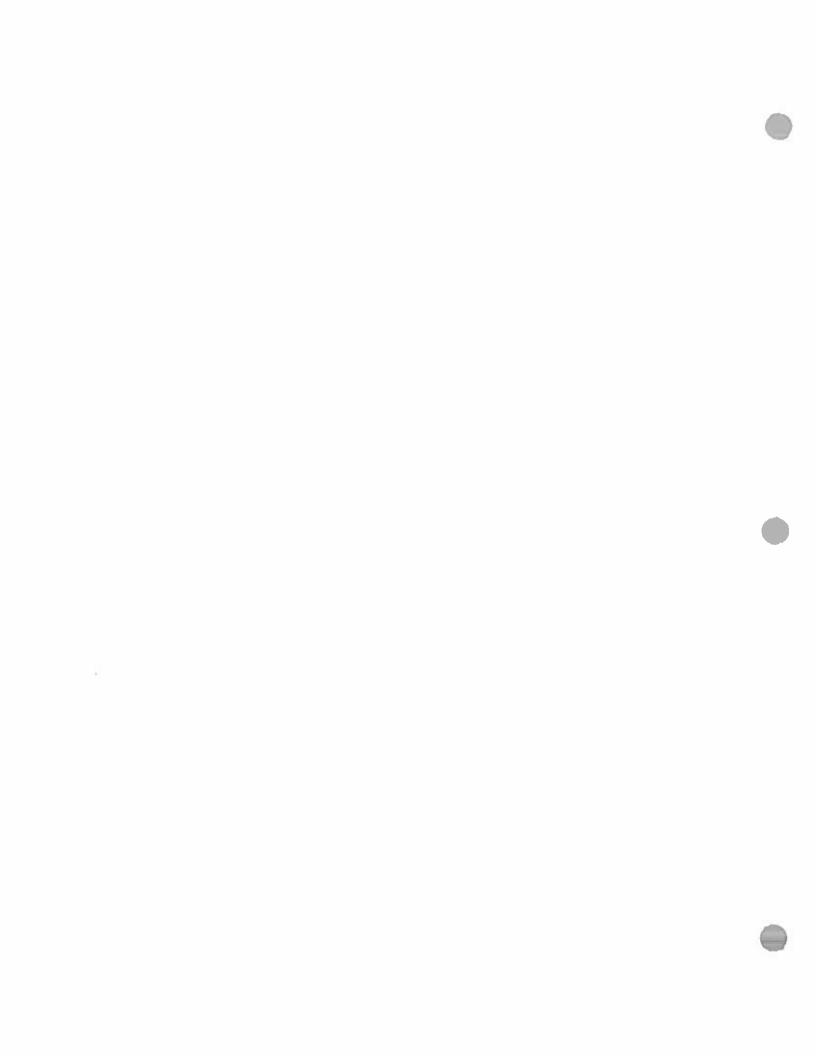
Pellet Mill and Cooler Potential CO, NOx, VOC and HAP Emissions

				Emission	Uncontrolled Unlimited	Uncontrolled & Unlimited	Controlled & Unlimited	lled &	Controlled & Limited	& Limited
Pollutant	CAS No.	HAP	VOC	Factor	Emissions ⁴	ions*	Emissions	ions,	Emissions (PIE)	(PIE)
				1	Max	Annual	Max	Annual	Max	Annual
				(Ib/ODT)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Acetaldehyde	75-07-0	>	٨	0.034	1,52	89'9	9/0.0	0.33	0.076	0.28
Acrolein	107-02-8	>	>	0.050	2.26	9.91	0.11	0.50	0.11	0.41
Formaldehyde	50-00-0	>	٨	0.13	5.77	25.3	0.29	1.26	0,29	1.05
Methanol	67-56-1	 -	>	0.0060	0.27	1.19	0.014	0.059	0.014	0.049
Phenol	108-95-2	>	\	0.025	1,14	5.01	0.057	0.25	0.057	0.21
Propionaldehyde	123-38-6	٨	*	0.015	0.66	2.90	0.033	0.14	0.033	0.12
			Total HAP	Total HAP Emissions	11.6	50.9	0.58	2.55	0.58	2.12
Total VOC (as propane)	1		٨	2.97	135	590	6.74	29.5	6.74	24.5
03	**	**		0.11	0.00	0.0	4.84	21.2	4.84	17.6
NOx	:		-	0.018	0.00	0.00	0.82	3.58	0.82	2.97
Total PM	•	**	-	9""	428.57	1877.14	4.29	18.77	4.29	18.77
Total PM ₁₀	••	••		5**	111.86	489.93	1.12	4.90	1.12	4.90
Total PM, s ⁶	:	;	:	0.015	69.13	251.46	69.0	2.51	0.69	2.51

- ighes:.

 1 Emission factors were derived based on stack testing data from the Greenwood plant and comparable Enviva facilities, and include contingency. The emission factors represent uncontrolled emissions.
 - 2 A 95.0% control efficiency for the RCO is applied to VOC and organic HAP emissions.
- Emissions from the pellet mills and pellet coolers are controlled by an RCO that operates primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there is no impact on emissions when operating in thermal mode.
- Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on proposed annual throughput. Controlled emissions are based on proposed short-term and annual throughputs and application of control device efficiencies.
 - PM emissions based on an outlet grain loading of 0.010 gr/scf and an exhaust flow rate of 50,000 scfm. PM₁₀ emissions based on PM emissions and speciation based on data for similar Enviva facility.
 - PM_{2.5} emissions factor represents post-control emissions and includes both process and combustion emissions with contingency.




TABLE 10
POTENTIAL PELLET PRESS AND COOLER EMISSIONS AT OUTLET OF RTO-3/RCO-2 STACK ENVIVA PELLETS GREENWOOD, LLC

Natural Gas Combustion Potential Criteria Pollutant Emissions

	Emission	1	Emissions (PTE)	s (PTE)
Pollutant	Factor ¹	Units	Max (lb/hr)	Annual (tov)
502	5.9E-04	lb/MMBtu	0.0061	0,027
Total PM	7.5E-03	1b/MMBtu	0.077	0.34
Total PM ₁₀	7.5E-03	lb/MMBtu	7.00.0	0.34

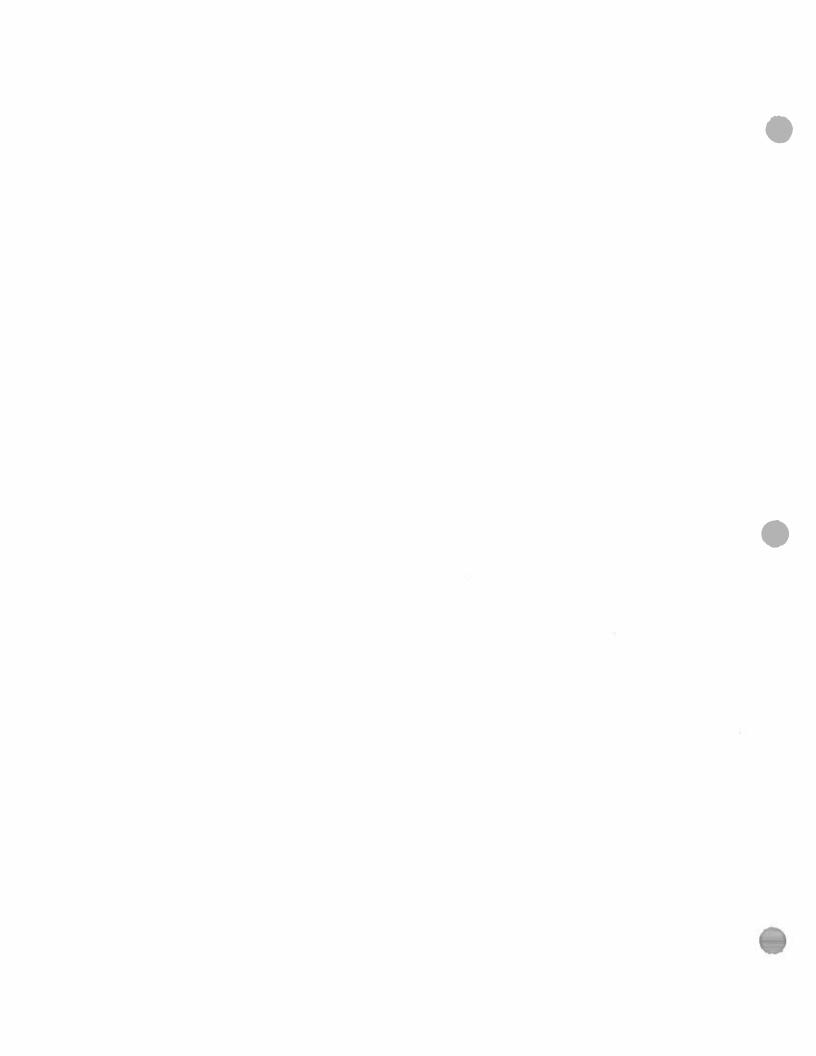
Natural Gas Combustion Potential HAP and TAP Emissions

			Emission			Emissions (PTE) ³	s (PTE)
Pollutant	HAP	VOC		Units	Footnote		1
		}	Factor			Max	Annual
						(lb/hr)	(200
2-Methylnaphthalene	٨	λ	2.4E-05	lb/MMscf	2	2,4E-07	1.1E-06
3-Methylchloranthrene	Α	λ	1.8E-06	Ib/MMscf	2	1.8E-08	8.0E-08
7,12-Dimethylbenz(a)anthracene	٨	Å	1.6E-05	Ib/MMscf	2	1.6E-07	7.1E.07
Acenaphthene	٨	٨	1.8E-06	Ib/MMscf	2	1.8E-08	8.05-08
Acenaphthylene	Y	٨	1.8E-06	Ib/MMscf	2	1.8E-08	8.0E-08
Acetaldehyde	٨	λ	1.5E-05	Ib/MMscf	2	1,5E-07	6.8E-07
Acrolein	٨	٨	1.8E-05	1b/MMscf	2	1.8E-07	8.0E.07
Аттопіа	2	N	3.20	lb/MMscf	2	0.033	0,14
Anthracene	>	¥	2.4E-06	lb/MMscf	2	2.4E-08	1,1E-07
Arsenic	٨	Z	2.0E-04	Ib/MMscf	2	2 OE-06	8.9E-06
Benz(a)anthracene	λ	*	1.8E-06	Ib/MMscf	2	1.8E-08	8.0E-08
Benzene	λ	٨	2.1E-03	Ib/MMscf	2	2.1E-05	9.4E-05
Benzo(a)pyrene	٨	٠	1.2E-06	1b/MMscf	2	1.2E-08	5.4E-08
Benzo(b)fluoranthene	Å	٨	1.8E-06	lb/MMscf	2	1.8E-08	8.0E-08
Benzo(q,h,i)perylene	λ	٨	1.2E-06	lb/MMscf	2	1.2E-08	5.4E-08
Benzo(k)fluoranthene	λ	٨	1.8E-06	lb/MMscf	2	1.8E-08	8.0E-08
Beryllium	٨	Z	1.2E-05	Ib/MMscf	2	1.2E-07	5.4E-07
Cadmium	λ	2	1.1E-03	lb/MMscf	2	1.1E-05	4.9E-05
Chromium VI	Å	Z	1.4E-03	tb/MMscf	2	1.4E-05	6.3E-05
Chrysene	\	٨	1.8E-06	Ib/MMscf	2	1.8E-08	8.0E-08
Cobalt compounds	٨	Z	8.4E-05	lb/MMscf	2	8.6E-07	3.8E-06
Dibenzo(a,h)anthracene	λ	٨	1.2E-06	lb/MMscf	2	1.2E-08	5.4E-08
Dichlorobenzene	λ	٨	1.2E-03	lb/MMscf	2	1.2E-05	5.4E-05
Fluoranthene	Υ	>	3.0E-06	lb/MMscf	2	3,1E-08	1.3E-07
Fluorene	¥	λ	2.8E-06	Ib/MMscf	2	2.9E-08	1.3E-07
Formaldehyde	\	λ	7.5E-02	ib/MMscf	2	7.6E-04	3.3E-03
Нехале	>-	>	1.8	lb/MMscf	2	1.8E-02	0.080
Indeno(1,2,3-cd)pyrene	>	>	1.8E-06	lb/MMscf	2	1.8E-08	8.0E-08
Lead	٨	Z	5.0E-04	lb/MMscf	2	5.1E-06	2.2E-05
Manganese	λ	Z	3.8E-04	Ib/MMscf	2	3.9E-06	1.7E-05
Mercury	٨	Z	2.6E-04	Ib/MMscf	2	2.7E-06	1.2E-05
Naphthalene	>	À	6.1E-04	Ib/MMscf	.2	6.2E-06	2.7E-05
Nickel	>	Z	2.1E-03	Ib/MMscf	2	2.1E-05	9.4E-05
Phenanthrene	>	٨	1.7E-05	Ib/MMscf	2	1.7E-07	7.6E-07
Pyrene	>	λ.	5.0E-06	lb/MMscf	2	5.1E-08	2.2E-07
Selenium compounds	>	2	2.4E-05	Ib/MMscf	2	2.4E-07	1.1E-06
Toluene	٨	٨	3.4E-03	Ib/MMscf	2	3.5E-05	1.5E-04
				Total HAP	Total HAP Emissions	0.019	0.084

POTENTIAL PELLET PRESS AND COOLER EMISSIONS AT OUTLET OF RTO-3/RCO-2 STACK **ENVIVA PELLETS GREENWOOD, LLC** TABLE 10

Notes:

1 Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from Ib/MMscf to Ib/MM8tu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4,


² Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

No control devices or limitations are proposed for this unit.

Abbreviations.

CAS - chemical abstract service
HAP - hazardous air pollutant
hr - hour
Ib - pound
NC - North Carolina
ODT - oven dried tons

RCO - regenerative catalytic oxidizer
RTO - regenerative thermal oxidizer
TAP - toxic air pollutant
tpy - cons per year
VOC - volatile organic compound
yr - year

DRIED WOOD HANDLING POTENTIAL EMISSIONS (DRY CHIP SILO AND PELLETIZER FEED SILO) **ENVIVA PELLETS GREENWOOD, LLC** TABLE 11

Calculation Basis

Hourly Throughput	88 ODT/hr
Annual Throughput ¹	660,000 ODT/yr

Potential VOC and HAP Pollutant Emissions

Dollaran	Emission Factor ²	Unlimited Emissions ³	missions ³	Limited Emissions (PTE) ³	issions 3
	(Ib/ODT)	Max (lb/hr)	Annual (tov)	Max (lb/hr)	Annual (tpy)
Formaldehyde	8.4E-04	0.074	0.32	0.074	0.28
Methanol	2.0E-03	0.17	0.75	0.17	0.64
Tota	Total HAP Emissions	0.25	1.08	0.25	0.92
VOC as propane from Chip Silo	1.42E-02	1.25	5.50	1.25	4.69
VOC as propane from Pelletizer Feed Silo	2.19E-04	0.019	0.085	0.019	0.072
Tota	Total VOC Emissions	1.27	5.58	1.27	4.76

Notes:

- Provided by Enviva
- ² HAP/TAP emission factors derived from NCASI's Wood Products Database (February 2013) for dry wood handling operations at an OSB mill, mean emission factors. The emission factors were converted from lb/MSF (3/8") to lb/ODT using the typical density and moisture content of an OSB panel. The VOC emission factor was derived based on Greenwood bag sampling data and includes 20% contingency.
- ^{3.} Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on the proposed annual throughput. No VOC/HAP/TAP control devices are proposed for these silos.

Abbreviations:

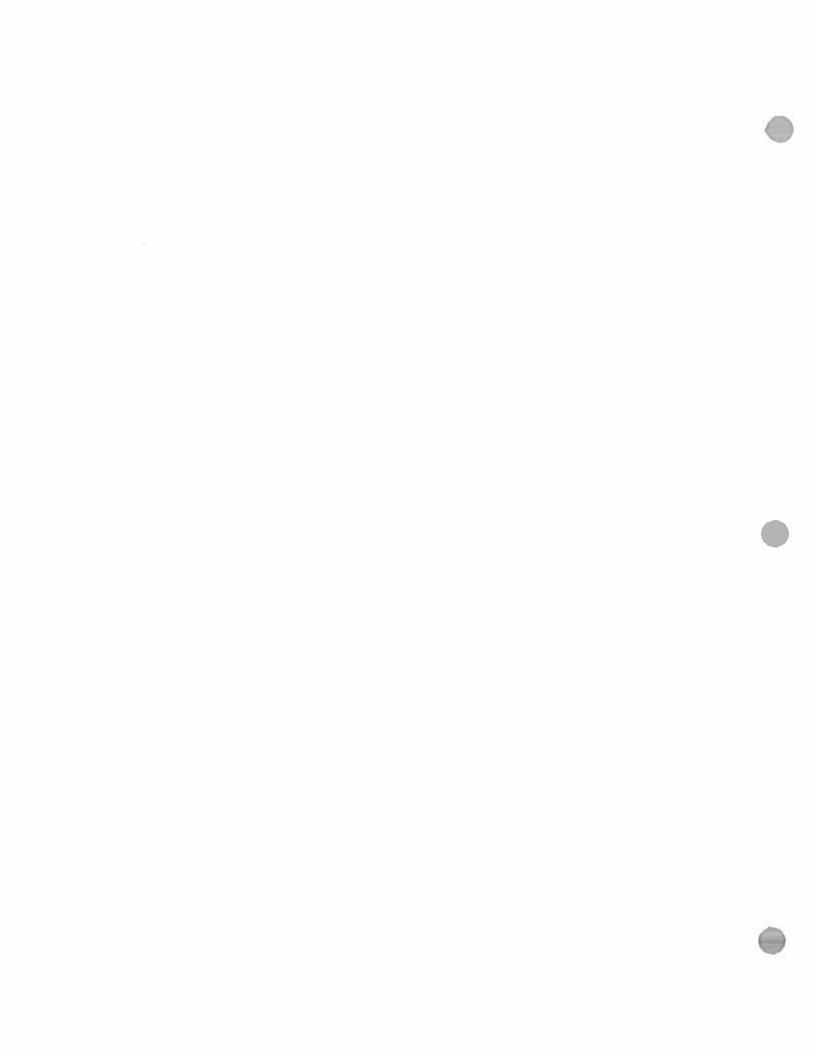
punod - qi hr - hour

ODT - oven dried tons

tpy - tons per year VOC - volatile organic compound yr - year

v

DEBARKER POTENTIAL EMISSIONS ENVIVA PELLETS GREENWOOD, LLC **TABLE 12**


Calculation Basis

Short-term Throughput 115.0	tons/hr (dry wood)
Approximate Moisture Content 50%	of total weight

			Unlin	Unlimited	Limited E	imited Emissions
			Emiss	Emissions ³	(РТЕ) ³	E)³
			Max	Annual	Max	Annual
Pollutant	Emissi	Emission Factor	(lb/hr)	(tpy)	(ib/hr)	(tpy)
PM ²	1.17E-02	lb/ton	2.70	11.8	2.70	10.3
PM ₁₀ 2	3.17E-04	lb/ton	0.073	0.32	0.073	0.28
PM _{2.5} ²	5.40E-05	lb/ton	0.012	0.054	0.012	0.047

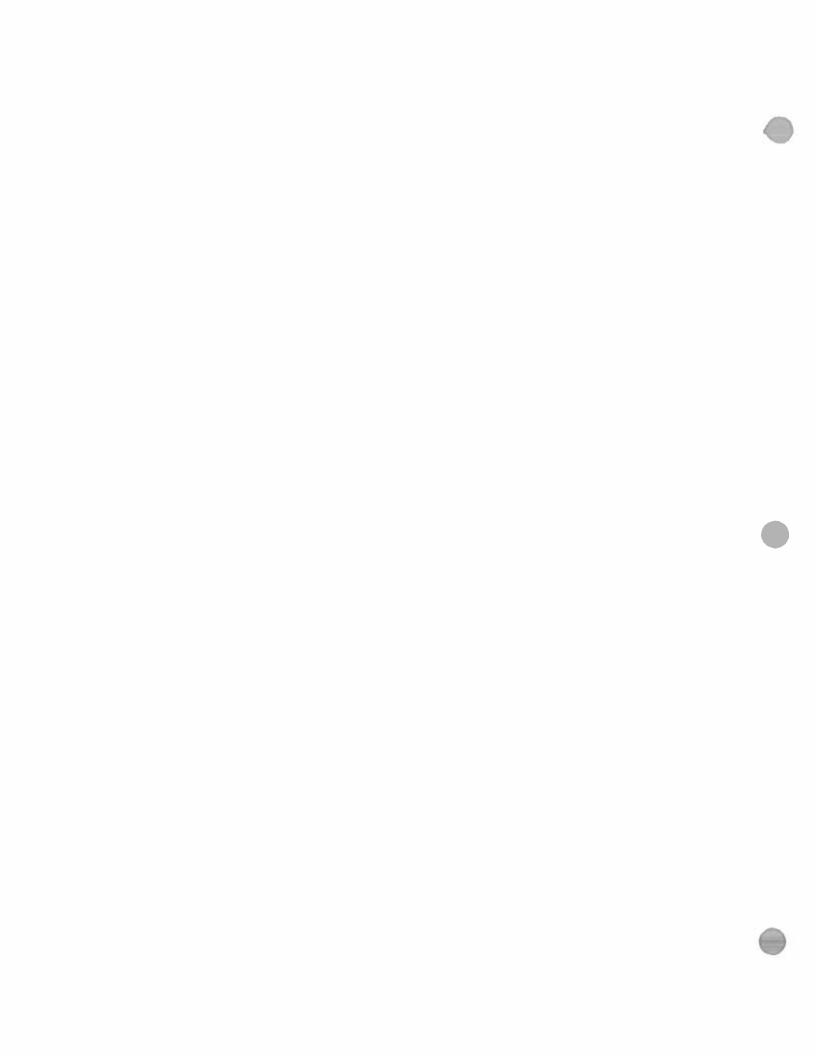
¹ Annual throughput used for the debarker provided by Enviva. The short-term throughput is based upon the maximum capacity of the debarker, 2019 NCASI white Paper based on measurements at a mill debarker, where logs are processed dry (i.e., without water spray). Emission factor for PM was back-calculated based on the PM_{2.5} factor and the PM_{2.5} fraction for fresh bark provided in the White Paper. Emission factor for PM₁₀ was calculated based on the calculated PM factor and the PM₁₀ fraction for fresh bark. Contingency was added to the factors.

3 Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on the proposed annual throughput. No control devices are proposed for this unit.

ELECTRIC POWERED CHIPPER EMISSIONS **ENVIVA PELLET GREENWOOD, LLC** TABLE 13

Calculation Basis

Annual Throughput of Chipper	766,500	tons/year (dry wood)
Short Term Throughput	87.5	tons/hr (dry wood)1
Approximate Moisture Content	%05	of total weight


			Unlimited Emissions ⁵	Unlimited :missions ⁵	Limited E	Limited Emissions (PTE) ⁵
Pollutant	Emissi	Emission Factor	Max (lb/hr)	Annual (tpy)	Max (lb/hr)	Annual (tpy)
THC as Carbon ²	4.10E-03	lb/ODT	0.36	1.57	0.36	1.57
VOC as propane ³	5.00E-03	Ib/ODT	0.44	1.92	0.44	1.92
Methanol ²	1.00E-03	Ib/ODT	0.088	0.38	0.088	0.38
pM ⁴	1.92E-02	TQO/dl	1.68	7.36	1.68	7.36
PM ₁₀ 4	9.60E-03	TOO/ql	0.84	3.68	0.84	3.68
PM _{2.5} 4	9.60E-03	TOO/dl	0.84	3.68	0.84	3.68

1 Chipper throughputs provided by Enviva.

² Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Medium Density Fiberboard, 08/02, Table 7 and Section 10.6.4, Hardboard and Fiberboard, 10/02, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

Emission factor for VOC as propane is from AP-42, Section 10.6.3., Medium Density Fiberboard, 08/02, Table 7.
 PM factor from Assessment of Fugitive Particulate Emission Factor for Industrial Processes, EPA-450/3-78-107 (September 1978), Table 2-47. Emission factor reduced by 60% to account for enclosed nature of operation. PM10/PM2.5 emissions assumed one-half of PM emissions.

5 Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on the proposed annual throughput. No control devices are proposed for this unit.

GREEN WOOD SCREENING EMISSIONS ENVIVA PELLET GREENWOOD, LLC TABLE 14

Calculation Basis

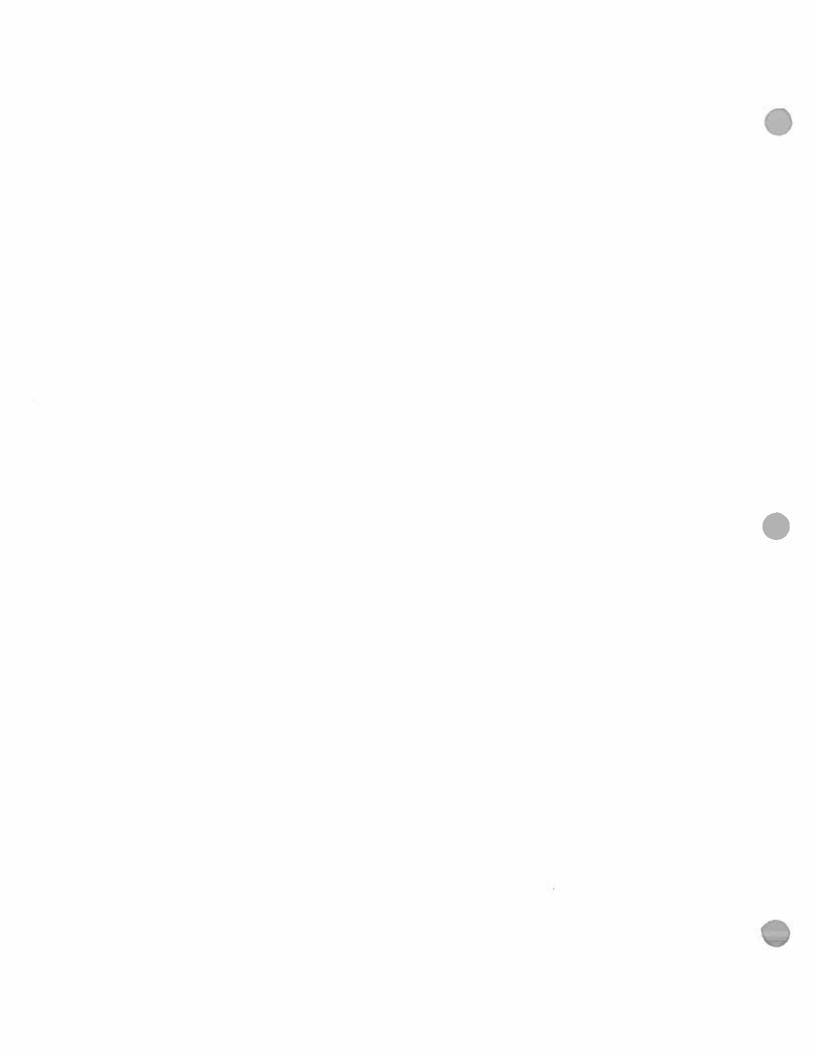
Hourly Throughput	87.5 ODT/hr
Annual Throughput	766,500 ODT/yr

Potential Criteria Pollutant Emissions

		Unlin	Julimited	Limited E	Limited Emissions
Pollutant	Emission Factor	Emissions	sions ²	(PT	(PTE) ²
		Max	Annual	Max	Annual
PM/PM ₁₀ /PM _{2.5}	0.0038 lb/ODT	0.33	1.46	0.33	1,46

Notes:

- 1. Emission factor from NCASI Technical Bulletin No. 1020 Table 9.1 for chip screening converted from units of bone dry tons (BDT) to ODT based on a moisture content of 50%.
- ² Unlimited emissions assume maximum hourly throughput at 8,760 hours/year. Limited emissions are based on the proposed annual throughput. No control devices are proposed for this unit.


Abbreviations:

hr - hour Ib - pound

ODT - oven dried tons

THC - total hydrocarbon

tpy - tons per year yr - year

TABLE 18 SUMMARY OF POTENTIAL EMISSIONS FROM OTHER BACHOUSES AND CYCLOMES ENVINA PELLETS GREZHWOOD, ILC

								ľ						ŀ			-1-0 5-00-		-	
				Exhaust	Pollutant	Annual	1000	Warmen land land		Choi	Uncontrolled Emissions'	Trissions,"				Contra	Controlled Emissions (P12)	MONTH (F. 14.	١	1
		Control		Flow Rate?	Loadina	Operation	Particulars specialism	Pocusion	PM		PMto	l.	PWLLS	-	PM		Pilitra	_	PM _{2.5}	
Emission Unit ID	Source Description	Device ID	Description				Pika	Phts.	Mex	Annual	T T T	Armusi	Max	Ammual	Max	Ammual	Max	Annual	-	Amenal
				(chri)	(Br/el)	(hours)	(% of PM)	(% of PM)	(lb/hr)	(tpy)	(1b/hr)	(fbA)	(Tb/hr)	(tax)	(B)/h)	(Add)	(By/hr)	1	(July)	(763)
£13	Dry Chip Silo	93	One (1) existing But Vent.	2,000	0.0.0	8,760	100.0%	\$60.00\$	17.1	75.1	17.1.	75.1	17.1	13.1	0.17	0.75	0.17	51.0	0.17	0.75
. 613	Pelletizer Feed Silo	CD10	One (1) existing Bin Vent	2.000	0.0.0	8.760	100 0%	100.0%	17.1	75.1	17.1	75.1	17.1	75.1	0.17	0.75	0.17	0.75	0.17	0.75
E40, E41	Peter Sio 1 and Palet Sio 2	cDZG	One (1) existing Cyclofiter	2.000	0.0.0	8,760	100 0%	360 001	17.1	15.1	12.0	75.1	17.1	75.1	617	0.75	0.17	0.75	0.17	0.75
		CD23	One (1) existing Cyclone ²	33 0000	20.0	000	700 005	100 000	9	713	4 80	433	9R 57	431.74	56.0	4.32	0.99	4.32	0.99	4.32
243	LOBOOLA	CD22	One (1) existing bachouse?	K1.000	8	8	200	200	8										1	
E43	Dust Silo	CD23	One (1) existing	3,300	0100	9,750	100 0%	100 0%	28.3	124	28 3	124	28.3	124	0.28	1.24	0.28	1.24	0.28	1.24
							Total Pi	Total PM Emissions:	178	781	178	181	178	781	1.8	7.8	1.70	7 8	1.78	7.81

Holes.
Fred by Carebratists	Search Fred	Fred Bull
Carebratists	Search Fred Bull	
Carebratists	Search Fred Bull	
Fred Fred Bu		

- service in the service of the servic

	Z.		

ENVIVA PELLETS GREENWOOD, LLC TABLE 16 GREEN WOOD HANDLING

		Bhabadala	del 6 Des	Dea	i DMC	Beng	Despession 1	١	ľ										
	TOTAL STATE OF THE PARTY OF THE	Number Moist	Motsture Emission Emission Emission	n Emissio	n Emission		Throughput	Unilmited PM Emissions ³	id PM	Unlimited PW ₁₆ Emissions ²	Paris .	Unlimited PM _{2.5} Emissions ²	ons ²	Limited PM Emissions (PTE) ³		Emissions (PTE)	Emissions (PTE) ³	Entissions (PTE) ³	(PTE)
		nts (%)	٦	(lb/ton	lb/ton) (lb/ton) (lb/ton)	8	(thy)	Max (lb/hr)	Amusal	Max Arrusal Max Arrusal Max Arrusal Max Arrusal Max Arrusal Max Arrusal Max (Br.) (Br.) (tsw) (tsw) (tsw) (tsw) (tsw) (tsw) (tsw) (tsw) (tsw)	Annual	Max (lb/hr)	Max Annual (lb/hr) (tort)	(Ib/hr) (ton)	Annual (tox)	Max (fb/br)	Max Annual (th/hr)	(fb/hr) (tow)	Annual
	Material feed conveyance to fuel storage piles (bark)	45%	H	1,84E-0	.89E-05 1_84E-05 2_79E-06	175	175 1,533,000 6.8E-03 3.0E-02 3.2E-03 1.4E-02 4.8E-04 2.1E-03 6.8E-03 3.0E-02 3.2E-03 1.4E-02 4.9E-04 2.1E-03	6.8E-03	3.06-02	3.26.03	1.4E-02	4.9E-04	2.1E-03	6.85-03	3.0E-02	3.26.03	1.4E-02	4.9£-04	2.16-03
\$	Material feed conveyance to raw wood chip storage pile (stacker/reclaimer pile)	48%	6 3.55E+05	35 1.68E-0	5 2 55E-06	175	1.68E-05 2 55E-06 175 1,533,000 6 2E-03 2 7E-02 2 9E-03 1.3E-02 4.5E-04 2.0E-03 6.2E-03 2.7E-02 2.9E-03 1.3E-02 4.5E-04 2.0E-03	6.2E-03	2 7E-02	2 96-03	1.3E.02	4.5E-04	2.06-03	6.25.03	2.7E-02	2.9E-03	1.36-02	4.5E-04	2.06-03
E46, E47	E46, E47 Truck Dump 1 and Truck Dump 2	\$00%	m	36 1.59E-0	2 406-06	175	38E-05 1.58E-05 2.40E-06 175 1,533,000 1.2E-02 5.1E-02 5.6E-03 2.4E-02 8.4E-04 3.7E-03 1.2E-02 5.1E-02 5.6E-03 2.4E-02 8.4E-04 3.7E-03	1.2£-02	5.1E-02	5.6E-03	2.4E-02	8.4E-04	3,76-03	1.2E-02	5,1E-02	5.6E-03	2.4E-02	8.4E-04	3 7E-03
						Total	Total Emissions: 2.5E-02 1.1E-01 1.2E-02 6.1E-02 1.8E-03 7.8E-03 2.6E-02 1.1E-01 1.2E-02 6.1E-02 1.8E-03 7.8E-03	2.5E-02	1.16-01	1.2E-02	5.1E-02	1.8E-03	7.0E-03	2.5E-02	1.1E-01	1.2E-02	5.1E-02	1.8E-03	7.BE-01

U = mean wind speed (mph)

3. Uniterised envisions assume maximum hourly broughput at 8,760 hours/year. United emissions are based on the proposed enrusi throughput. No control devices are proposed for these emission sources.

Abbrardations:

1- four

6- pour

7- four

7- four

8- pour file a particular matter

8- pour file a particular matter with an ecropyramic demeter less than 10 micrors

8- particular matter with an aerodynamic demeter of 2.5 micrors or less

17- year

ENVIVA PELLETS GREENWOOD, LLC STORAGE PILE WIND EROSION TABLE 17

Source	Description	PM Emission Factor	actor?	VOC Emission Factor	1 Factor ²	Pile Width/	Pile Length 1	Pile teight	uter Surface rea of Pile ³	PM Emissions (PTE)	ns (PTE)*	PIM ₁₀ Emissions (PTE) ⁶	lssions 2) ⁶	PM _{2.5} Emissions (PTE) ⁸	issiom E)*	VOC Emissions as propane (PTE) ^{4,5}	pions as PTE) 4.5
		(lb/day/acre)	(ful/hr/fit ²)	(lb/day/acre)	(lb/hr/ft²)	(2)	(3)	(3)	GP)	(tb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tb/hr)	(tpy)
	Stacker/Redamer Pile	3	3.96-06	3.6	3.4E.06	260	-	9	66,659	0.26	1.14	0.13	0.57	0.020	980.0	0.28	1.23
	Delier Mill World	-	3.9E.D6	3.6	3.45.06	8	200	2	31,200	0.12	0.54	0 061	0.27	9.17E-03	0.040	0.13	0.57
	Lease Bies 1 shrough 4	1.7	3.95-06	3.6	3.4E-06	100	150	12	25,200	0.10	0.43	610.0	0.22	7.40E 03	0.032	0.11	0.46
PO, ES	Chia dia Bila		3.9E.D6	3.6	3.4E.06	7	12	0	1,025	4.01E-03	810.0	2.01E:03	8,795.03	3.01E-04	1.32E-03	4 31E-03	0.019
	Find Storage Pile 1	4.1	3.96-06	3.6	3.46.06	100	200	20	38,400	0.15	99.0	0.075	0 33	0.011	0.049	0.16	0.71
	First Storage Feeder Bin	1.7	3 96-06	9 6	3.46.06	20	ş	2	2.400	9.40E.03	0,041	4 70E-03	0.021	7 05E 04	3 09E-03	0.01	0.04
								۴	Total Emissions:	0.85	2.83	0.32	1,41	0.048	0.21	69.0	3.03

TSP emission factor based on U.S. EPA Centrol of Open Fugstive Dust Sources. Research Triangle Part, Month Corolina, EPA-450/3-88-008 September 1988, Page 4-17

 $E = 1.7 \left(\frac{s}{1.5}\right) \left(\frac{3 h(3 + p)}{235}\right) \left(\frac{f}{15}\right) (15/4 a) \cdot accc)$

s - sik content (%) for further sawmits (mean) from AP-42, Section 13.2.2 - Unpaved Roads, 11/06, Table 13.2.2-1 s. sift content of wood chips (%):

8.4 120 6.2 p. number of days with reinfall greater than 0.01 fruch: I (time that wind exceeds 5.16 m/s - 12 mph) (%)

Per AP-42, Settlon 13.2.1, Figure 13.2.1.2 (Greenwood, SC)
Based on meteorological data averaged for 2012 2018 for Greenwood County Alrport, SC National Wealther Service (WWS) Station

PM., is assumed to equal 50% of 15P based on U.S. EPA Control of Open Fugither Dost Sources, Research Histogle Park, North Carokra. EPA-450/3-88 008. September 1988 \$0% PM TSP ratio

PM1; is assumed to equal 1.5 % of 15P U.S. EPA Bastignound Document for Revisions to Fine fraction Ratios Used for AP-42 Fugstve Dust Emission Factors. November 2006. 7.5% PM, vTSP ratio

* Emission lectors obtained from NCASI document provided by the South Cardina Department of health and Environmental Control (DHEC) for the calculation of lugitive VOC emissions from greenwood storage pales. Emission Lactors from greenwood storage pales are less than the low end of the range of the factors fitted; however, Envivo chose to employ the maximum emission fact from the NCASI document for purposes of conservation.

Emissions are calculated in tons of carbon per year by the following formula:

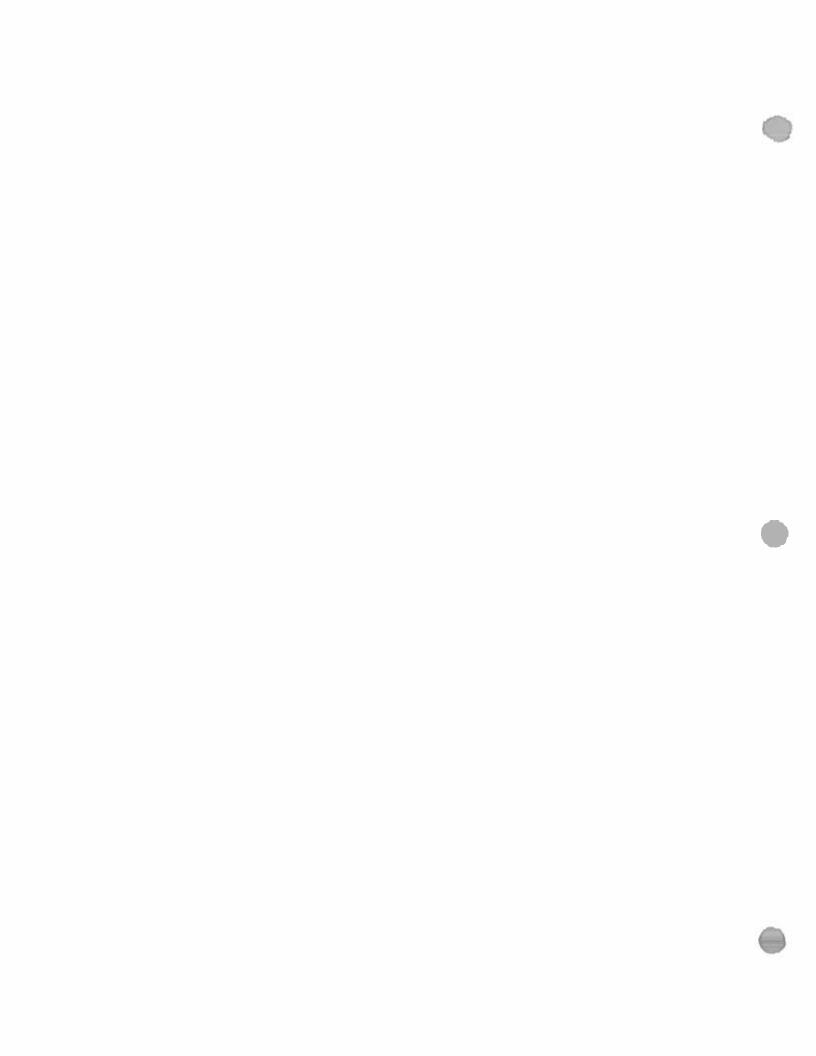
tons C/year = 5 acres * 365 days * 3.6 lb C/acre day / 2000 lb/ton

Emission factor converted from as carbon to as propane by multiplying by 1,22.

Mo operational restrictions or control devices are proposed for these sources.

Abbrentations: EPA - Environmental Protection Agency

n - feet


n' square feet b pound

mph - miles per hour NC, Month Cardinal MCAS1 - National Council for Air and Stream Improvement, Inc. NWS - National Weather Service

PM particulate matter with an aerodynamic demeter less than 10 microns PM₂₄, particulate matter with an aerodynamic demeter of 2.5 microns or less toy 100% per year.

The 100% superiorded particulate are not a superiorded particulate.

Ye 100% volatile organic compound.

TABLE 18 ENGINE 1 (GENERATOR) AND ENGINE 2 (FIRE PUMP) POTENTIAL EMISSIONS ENVIVA PELLETS GREENWOOD, LLC

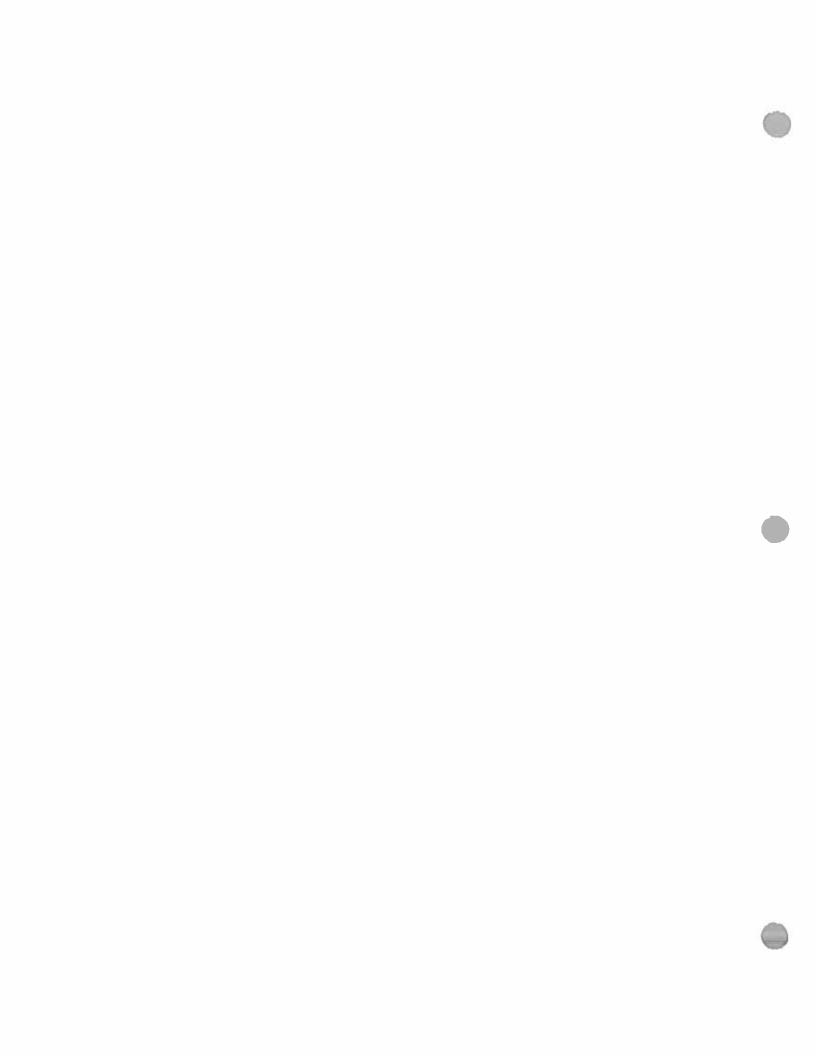
Engine 1 (Generator)

Equipment and Fuel Characteristics

Engine Power	865 hp (brake)
Hours of Operation	500 hr/yr
Heating Value of Diesel	19,300 Btu/lb
Power Conversion	7,000 Btu/hr/hp

Criteria Pollutant Emissions

				Potential	Potential Emissions
Pollutant	Category	Emission Factor	Units	Max	Annual
				(lb/hr)	(tpy)
TSP	PSD	1.80E-02	q/hp-hr (2)	0.03	8.58E-03
PM10	PSD	1,80E-02	g/hp-hr (2)	0.03	8.58E-03
PM _{2.5}	PSD	1.80E-02	g/hp-hr (2)	0.03	8.586-03
NO,	PSD	5,74	g/hp-hr (2)	10.95	2.74E+00
205	PSD	15	ppmw (3)	9.41E-03	2.35E-03
8	PSD	4.00E-01	q/hp-hr (2)	0.76	1.91E-01
VOC (NMHC)	PSD	1.00E-02	g/hp-hr (2)	1.91E-02	4.77E-03


				Potential	Potential Emissions
Pollutant	Category	Emission Factor	Units	Max	Annual
				(lb/hr)	(фу)
Acetaldehyde	HAP	5.37E-06	lb/hp-hr (4)	4.64E-03	1.16E-03
Acrolein	HAP	6.48E-07	lb/hp-hr (4)	5.60E-04	1.40E-04
Benzene	HAP	6.53E-06	lb/hp-hr (4)	5.65E-03	1.41E-03
Benzo(a)pyrene	HAP	1.32E-09	lb/hp-hr (4,5)	1.14E-06	2.85E-07
1,3-Butadiene	HAP	2.74E-07	lb/hp-hr (4)	2.37E-04	5.92E-05
Formaldehyde	HAP	8.26E-06	lb/hp-hr (4)	7.14E-03	1.79E-03
Polycyclic Organic Matter	HAP	1.18E-06	(b/hp-hr (4)	1.02E-03	2.54E-04
Toluene	HAP	2.86E-06	lb/hp-hr (4)	2.48E-03	6.19E-04
Xylene	HAP	2,00E-06	lb/hp-hr (4)	1.73E-03	4.31E-04
		Highest H/	Highest HAP (Formaldehyde)	7,14E-03	1,79E-03
			Total HAPs	2.35E-02	5.86E-03

NSPS allows for only 100 hrs/yr of non-emergency operation. Potential emissions for the emergency generator are conservatively based on 500 hr/yr, Emissions factors from technical data sheet for engine.

Suffur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.

Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.

Senzo(a)pyrene is included as a HAP in Total PAH.

TABLE 18 ENGINE 1 (GENERATOR) AND ENGINE 2 (FIRE PUMP) POTENTIAL EMISSIONS ENVIVA PELLETS GREENWOOD, LLC

Engine 2 (Fire Pump)

Equipment and Fuel Characteristics

Engine Power	305 hp
Hours of Operation	500 hr/yr ¹
Heating Value of Diesel	19,300 Btu/lb
Power Conversion	7.000 Btu/hr/hp

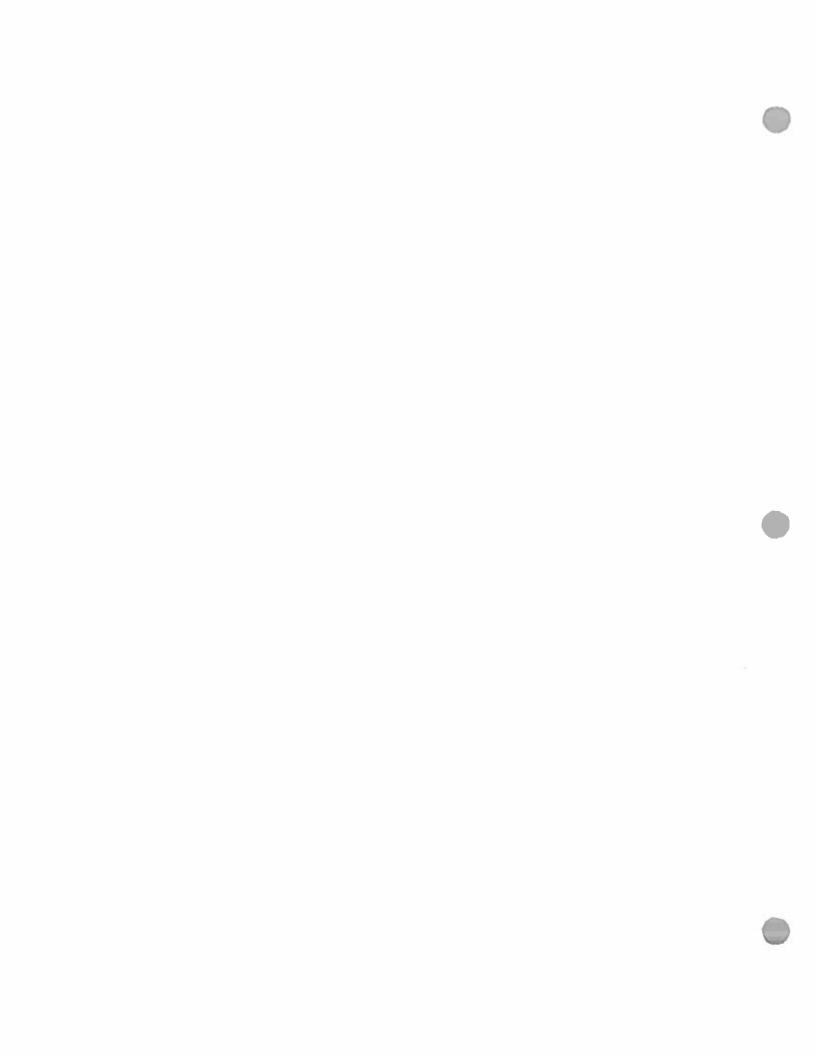
Criteria Pollutant Emissions

				Potential (Potential Emissions
Pollutant	Category	Emission Factor	Units	Max	Annual
				lb/hr	tpy
TSP	PSD	0.15	q/hp-hr (2)	0.10	2.52E-02
PM _{to}	PSD	0.15	g/hp-hr (2)	0.10	2.52E-02
PM _{Z,5}	PSD	0.15	g/hp-hr (2)	0.10	2.52E-02
NOx	PSD	3,00	g/hp-hr (2,5)	2.02	5.04E-01
SO ₂	PSD	15	рргим (3)	3.32E-03	8.30E-04
	PSD	2.60	g/hp-hr (2)	1.75	4.37E-01
VOC (NMHC)	PSD	2.51E-03	lb/MMBtu (4)	5.36E-03	1.34E-03

Hazardous Air Pollutant Emissions

				Potential	Potential Emissions
Pollutant*	Category	Emission Factor	Units	Max	Annual
				lb/hr	tpy
Acetaldehyde	HAP	5,37E-06	lb/hp-hr (4)	1.64E-03	4.09E-04
Acrolein	HAP	6.48E-07	lb/hp-hr (4)	1.97E-04	4.94E-05
Benzene	HAP	6.53E-06	lb/hp-hr (4)	1.99E-03	4.98E-04
Benzo(a)pyrene	HAP	1.32E-09	lb/hp-hr (4)	4.01E-07	1.00E-07
1,3-Butadiene	HAP	2.74E-07	lb/hp-hr (4)	8.35E-05	2.09E-05
Formaldehyde	HAP	8.26E-06	lb/hp-hr (4)	2.52E-03	6.30E-04
Polycyclic Organic Matter	HAP	1.18E-06	lb/hp-hr (4)	3.59E-04	8.97E-05
Toluene	HAP	2.86E-06	lb/hp-hr (4)	8,73E-04	2.18E-04
Xylene	HAP	2.00E-06	lb/hp-hr (4)	6.08E-04	1.52E-04
:		Highest HJ	Highest HAP (Formaldehyde)	2.52E-03	6.30E-04
			Total HAPs	8.27E-03	2.07E-03

NSPS allows for only 100 hrs/yr of non-emergency operation. Potential emissions for the emergency generator are conservatively based on 500 hr/yr.


Emissions standards from NSPS Subpart IIII (or 40 CFR 89.112 where applicable) in compliance with post-2009 construction.

Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(a) as required by NSPS Subpart IIII.

Emission factor obtained from AP-42 Section 3.3, Tables 3.3-1 Table 3.3-2.

Emission standard for NO_x + NMHC (Non-Methane Hydrocarbons-er-406) from Table 4 of NSPS Subpart IIII. Conservatively assumed entire standard is attributable to NO_x.

Benzo(a)pyrene is included as a HAP in Total PAH.

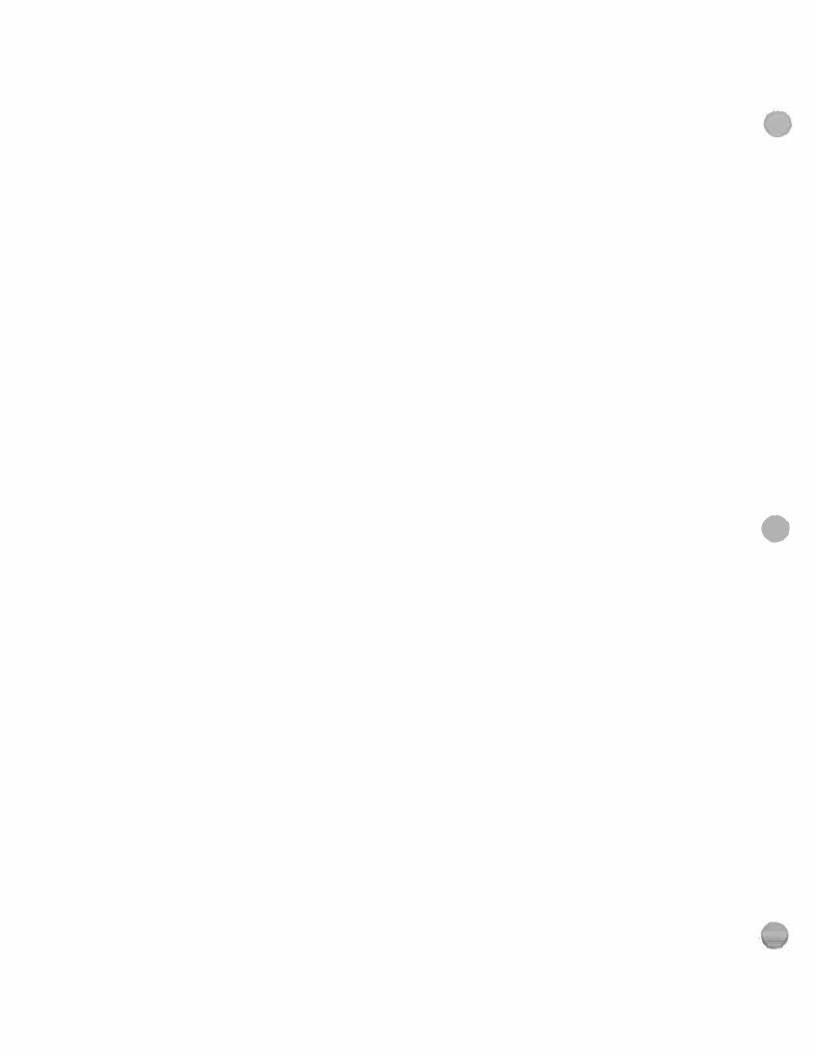


TABLE 19 DIESEL STORAGE TANKS ENVIVA PELLETS GREENWOOD, LLC

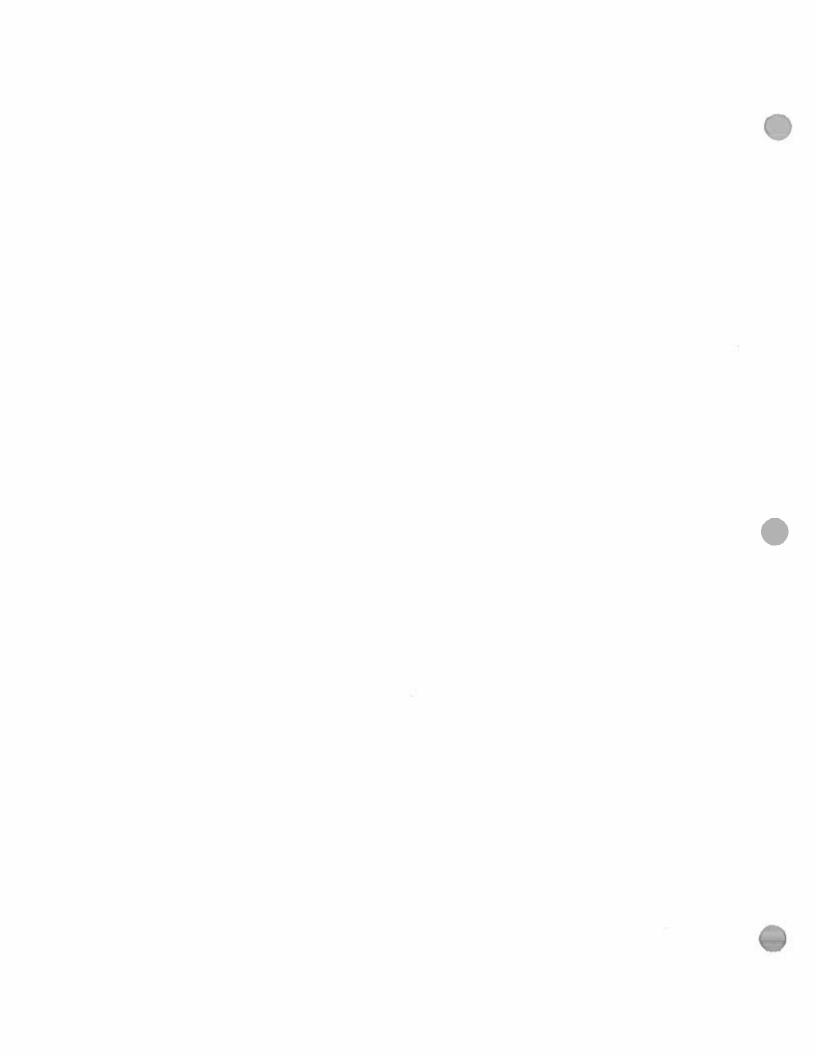
Description	AST-1	AST-2	AST-4	Units	Notes
a - Tank Paint Solar Absorptance		0.17		dimensionless	AP-42, Chapter 7 - Table 7.1-6 for White Tank, Good Condition (default)
l - Annual Avg Total Solar Insolation Factor		1380		dimensionless	AP-42, Chapter 7 - Table 7.1-7 for Columbia, SC
IAx - Annual Avg Maximum Amblent Temperature		534.97		2	AP-42, Chapter 7 - Table 7.1-7 for Columbia, SC
Tw Annual Avg Minimum Ambient Temperature		510.87		R	AP-42, Chapter 7 - Table 7.1-7 for Columbia, SC
R - Ideal Gas Constant		10.731		psia*ft³/lb-mole R	psia*ft³/lb-mole R AP-42, Chapter 7 - Page 7.1-16
Kp - Product Factor		1		dimensionless	Assume conservative value of 1
ΔP _v - Daily Vapor Pressure Range		0.008		psia	Calculated per Figure 7.1-14b
ΔP _b - Breather Vent Pressure Setting Range		90.0		psia	AP-42, Chapter 7 - Page 7.1-13 Note 3 (default)
P Atmospheric Pressure		14.7		psia	AP-42, Chapter 7

- 4	Я
	4
•	7
- 2	Ę
- 6	2
- 8	
46	
- 5	
- 7	5
.3	4
7	2
7	Ä
	٩
7	5
- 4	ą
- 6	J
	•
- 6	

Description	AST-1	AST-2	AST-4	Units	Notes
Tank Diameter	5.3	3.3	3.7	If.	Dimensions were provided by Enviva
Tank Length	12.3	6.0	12.5	يع	Dimensions were provided by Enviva
Tank Design Volume	2,000	359.00	660.00	gal	Conservative design specifications
Tank Working Volume	1,000	179.5	330	gal	50% of tank design volume because tanks will not be full at all times
Tank Throughput	008'66	17,914	32,934	gal/yr	Max monthly site-wide throughput for 2018, scaled to an annual basis. Individual tank throughputs are scaled based on size the of each tank.
Equivalent Tank Diameter (D _E)	9.11	5.02	7.63	ft	AP-42, Chapter 7 - Equation 1-13 (SQRT(LD/(PI/4)))
Effective Height (H _E)	4.16	2.59	2.87	lt	AP-42, Chapter 7 - Equation 1-14 (PI/4*D)
V Vapor Space Volume	135.68	25.66	65.63	th ³	AP-42, Chapter 7 - Equation 1-3 (PI/4*D 2 + H_{VO}), substitute D $_E$ for D for horizontal tanks
H _∞ - Vapor Space Outage	2.08	1.30	1.44	ft.	AP-42, Chapter 7 - H _{vo} = 0.5 °H _E for horizontal tanks
P _{ve} - Vapor Pressure	600.0	0.009	600'0	psia	Vapor pressure for distillate fuel oil no. 2 at 70F (daily average liquid surface temp is lower; therefore, this Pva is conservative)
M Vapor Molecular Weight	130	130	130	lb/lb.mole	AP-42, Chapter 7 - Table 7,1-2 for diesel
Q - Throughput	2376.19	426.53	784.14	bbl/yr	

TABLE 19 DIESEL STORAGE TANKS ENVIVA PELLETS GREENWOOD, LLC

ı	ь
ı	გ
ı	Ë
Г	=
	7
	9
	<
	Ē
	ā
	Ų.
ı	


Description	AST-1	AST-2	AST-4	Units	Notes
K. Vapor Space Expansion Factor	0.04	0.03	0.03	dimensionless	AP-42, Chapter 7 - Equation 1-7 (ΔΤν/Τaa + ((ΔPv - ΔPb)/(Pa + ΔPva))
ΔT _v - Daily Vapor Temperature Range	23.92	17.35	17.35	R	AP-42, Chapter 7 - Equation 1-8 (0.72*ΔTa + 0.028*q*1)
ΔT, - Daily Ambient Temperature Range	24.1	24.1	24.1	R	AP-42, Chapter 7 • Equation 1-12 (Tax - Tan)
K Vented Vapor Saturation Factor	1.00	1.00	1.00	dimensionless	AP-42, Chapter 7 - Equation 1-20 (1/(1 + 0.53Pva*Hvo))
W _v - Stock Vapor Density	0.000208	0.000208	0.000208	lb/ft³	AP-42, Chapter 7 - Equation 1-21 (Mv * Pva) / (R * Tla)
Tu - Daily Average Liquid Surface Temperature	524.78	522.93	522.93	R	AP-42, Chapter 7 - Equation 1-26 (0.44*Taa + 0.56Tb + 0.00790*1)
T Daily Average Ambient Temperature	522.92	522.92	522.92	R	AP-42, Chapter 7 - Equation 1-27 ((Tax + Tan)/2)
T _b - Liquid Bulk Temperature	522.94	522,94	522.94	R	AP-42, Chapter 7 - Equation 1-28 (Taa + 60 - 1)
N - Number of Turnovers	99.80	99.80	99.80	dimensionless	
Kn - Saturation Factor	0.47	0.47	0.47	dimensionless	AP-42, Chapter 7 - Page 7,1-18 (For N⇒36, Kn = (160 + N)/6N; For N<36, Kn = 1)

Potential VOC Emissions

Description	AST-1	AST-2	AST-4	Units	Notes
L, - Standing Loss	0.43	0.06	0.15	lbs/yr	AP-42, Chapter 7 - Equation 1-2 (365 * Vv * Wv * Ke * Ks)
t Warking Loss	1.30	0.23	0.43	lbs/yr	AP-42, Chapter 7 - Equation 1-29 (0.0010 * Mv * Pva * Q * Kn * Kp)
L _t - Total Loss	1.73	0.29	0.58	lbs/yr	AP-42. Chapter 7 - Equation 1-1 (LS + Lw)
Total VOC Emissions per Tank	1.73	0.29	0.58	lbs/yr	
Total VOC Emissions	8.7E-04	1.5E-04	2.9E-04 tons/yr	tons/yr	

POTENTIAL FUGITIVE PM EMISSIONS FROM UNPAVED ROADS **ENVIVA PELLETS GREENWOOD, LLC**

Source Data

	Distance					Loaded	Average	
Vehicle Buthings	Traveled per	Trips Per	Della Marr	Events Per	Empty Truck	Truck	Truck	
france series	Roundtrip1	Day1	Dany vm	Year	Year Weight	Weight	Weight	Annual VM1
	(£)			(days)	(lb)	(q)	(ton)	
Log Delivery to Wood Yard	2,900	168	92	365	30,000	90,000	30.0	33,680
Wood Chips to Truck Tippers	1,800	192	65	365	30,000	90,000	30.0	23,891
Bark to Fuet Pile	5,500	48	50	365	30,000	90,000	30.0	18,250
Employee Parking	400	40	3	365	4,000	4,000	2.0	1,106
							29.6	78.927

Distance traveled per round trip and annual average daily trip counts were provided by Enviva

Emission Calculations Unpaved Road:

Pollutant	Constant	Silt Content (S)²	Particle Constant	Particle Constant	Emission Factor ³	Emissions (DTF)	(PTF)
	(Ib/VMT)	(%)	0	Ξ.	(Ib/VMT)	(lb/hr)	(tpy)
		8.4	0.7	0.45	7.18	6.30	27.6
lı ₀	1.5	8.4	0.9	0.45	2.05	1.80	7.87
Azs	0.15	8.4	6.0	0,45	0.20	0.18	0.79

Constants (k. a. & b) based on AP-42, Section 13.2.2 (Unpaved Roads), Table 13.2.2-2 for Industrial Roads, November 2006

2. Sit loading fector based on AP.42, Section 13.2.2 (Unpaved Roads). Table 13.2.2-1, Lumber Sawmills, November 2006

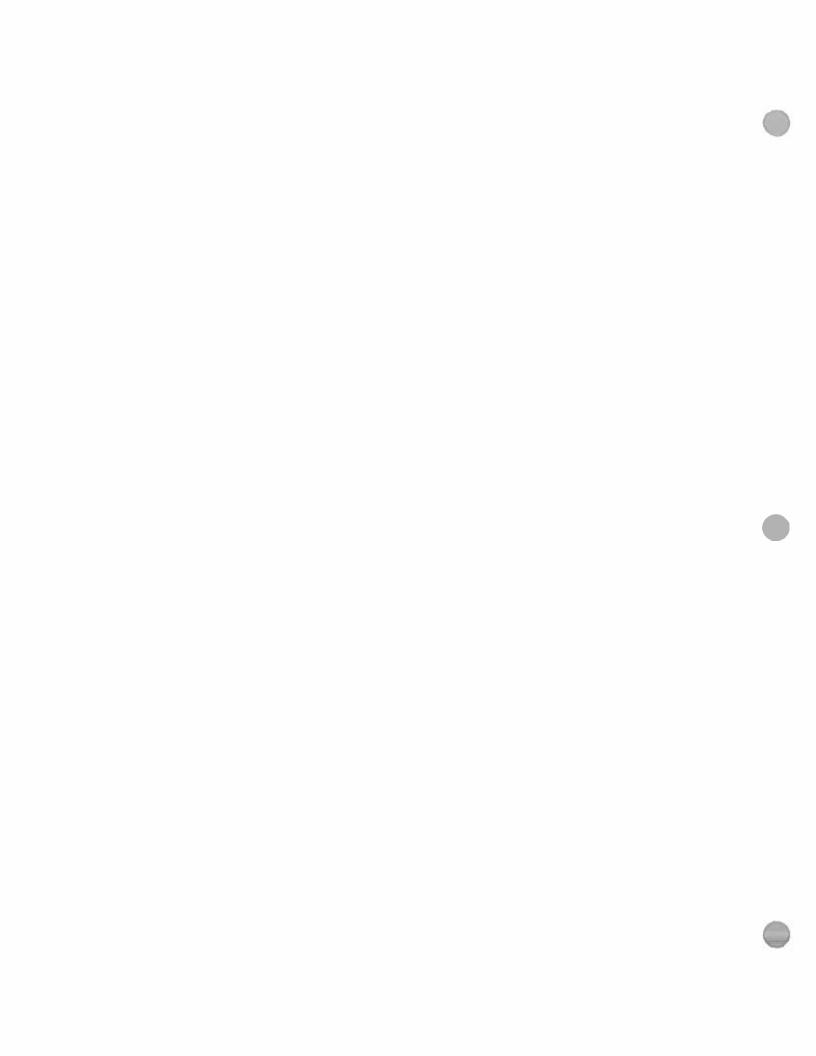
³ Emission factors calculated based on Equation 1a from AP-42 Section 13.2.2 - Unpaved Roads, 11/06. Particulate Emission Factor: E_{ent} = k (s/12)⁴ x (W/3)^b * ((365-P)/365)

k = particle size multiplier for particle size range and units of Interest

E = size-specific emission factor (Ib/VMT)

s = surface material sift content (%)

W = mean vehicle weight (tons)


Penumber of days with at least 0.01 in of precipitation during the averaging period =

tpy - tons per year yr - year VMT - vehicle miles travaled VOC - volatile organic compound

Potential emissions calculated from appropriate emission factor times vehicle miles traveled with control efficiency of 90% for water / dust suppression activities. Hourly emissions calculated based on annual emissions and 8,760 hours/year.

Abbreviations: ft - feet

In - hour Ib - pound PM - perticulate matter PMs - perticulate matter with an aerodynamic diameter less than 10 microns PMs s, particulate matter with an aerodynamic diameter of 2.5 microns or less

TABLE 21 POTENTIAL FUGITIVE PM EMISSIONS FROM PAVED ROADS ENVIVA PELLETS GREENWOOD, LLC

Vanicle Activity	Distance Trips Traveled per Per V	Trips Per	À	Events Per Year	Empty Truck Weight	Loaded Truck Weight	Average Truck Weight	Armusi	PM Emission Factor	PM ₁₀ Emission Factor ²	PM _{Es} Emission Factor ²	PM Em	PM Emissions (PTE)**	E)24	PM ₁₀ En	Phi _{te} Emissions (PTE) ^{2,4}	TE)**	PM _{2.5} EH	PM _{2.5} Emissions (PTE) ^{2.4}	E)**
	ε	Dev		_	9	<u>e</u>	(ton)		(TMV/dl)	(Ib/vMT)	(TMV/dt)	(lb/day)	(Ib/hr)	(tpy)	(tb/day)	(lb/hr)	(tpy)	(lb/day)	(lb/hr)	(tpy)
I no Delivery to Wood Yard	100	88	22	365	30.000	90.000	30.0	8.130	2.2	0.44	0.11	4 90	0.20	69.0	0.98	0.041	0.18	0.24	0.010	0.044
Month Phine to Truck Tonners	300	192	25	385	30.000	90.000	30.0	9.291	2.2	0.44	0.11	5.60	0.23	1.02	1.12	0.047	0.20	0.27	0.011	0.050
Back to First Bile	200	48	9	365	30,000	90 000	30.0	2.323	2.2	0.44	0.11	1,40	0.058	0.26	0.28	0.012	150'0	690'0	0.0029	0.013
Emolowee Parking	900	Ş	3.03	365	4,000	4.000	0.2	1,106	0.1	0.03	10.0	0.042	1,75E-03	7.68E-03	8.425.03	3,516.04	1 54E-03	2.07E-03	8.61E.05	3.775.04
		1							į	Total	Total Emissions:	11.9	0.50	2.18	2.39	0.10	0.44	0.59	0.024	11.0

[†] Distance travoled per round trip and annual average daily trip counts were provided by Ennia.
[‡] Emission factors calculated based on Equation 2 from AP-42 Section 13.2.1 - Paved Roads, 01/11.

E - emission factor (lib/ton)

k = particle size multiplier (dimensioniess) for PM = 0.011

 $k=partoto size multiplier (dimensionitess) for PMs_0=0.0022 \\ k=particle size multiplier (dimensionitess) for PMs_1=0.00054 \\ st. mean road surface sixt loxating from AP-A2 Table 13.2.1-3 for quarriers (g/m³)=8.2$

P - No. dary with rainfall greater than 0.01 mch 12.0 Per AP-42, Soction 13.2.1, Figure 13.2.1-2 (Greenwood, 34.5).

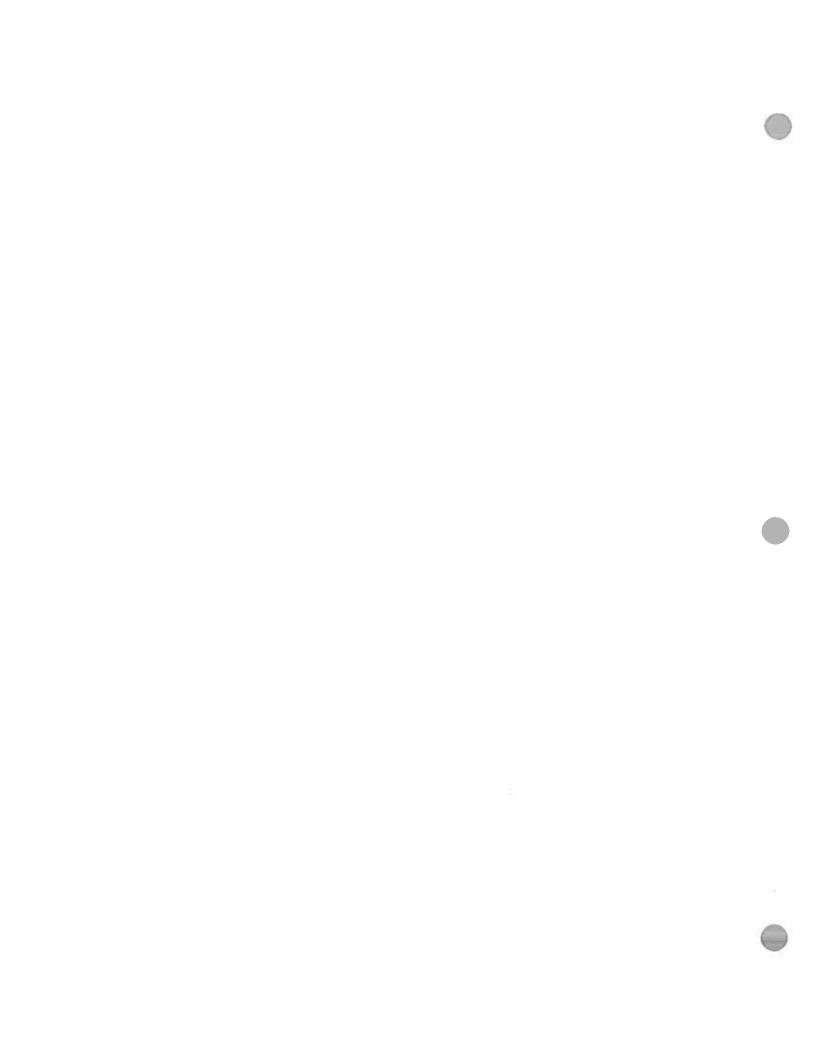
Perental emission salculated from appropriate emission factor times vehicle melt traveled with control efficiency of 60% for water / dust suppression activities followed by sweeping. Per Table 5 in Chapter 4 of the Ara Pollution Engineering Manual, Air and Waste Management Association, page 141.

Control efficiency (%) = 96.0.283*V, where V is the number of vehicle passes since application of water.

Housy emissions calculated based on annual emissions and 8.750 hours/year.

tpy - tons per year
yr - year
VMT - veshcle miles sraveled
VDC - votatile organic exmpound

R - feet
W - Pour II
B - Pour

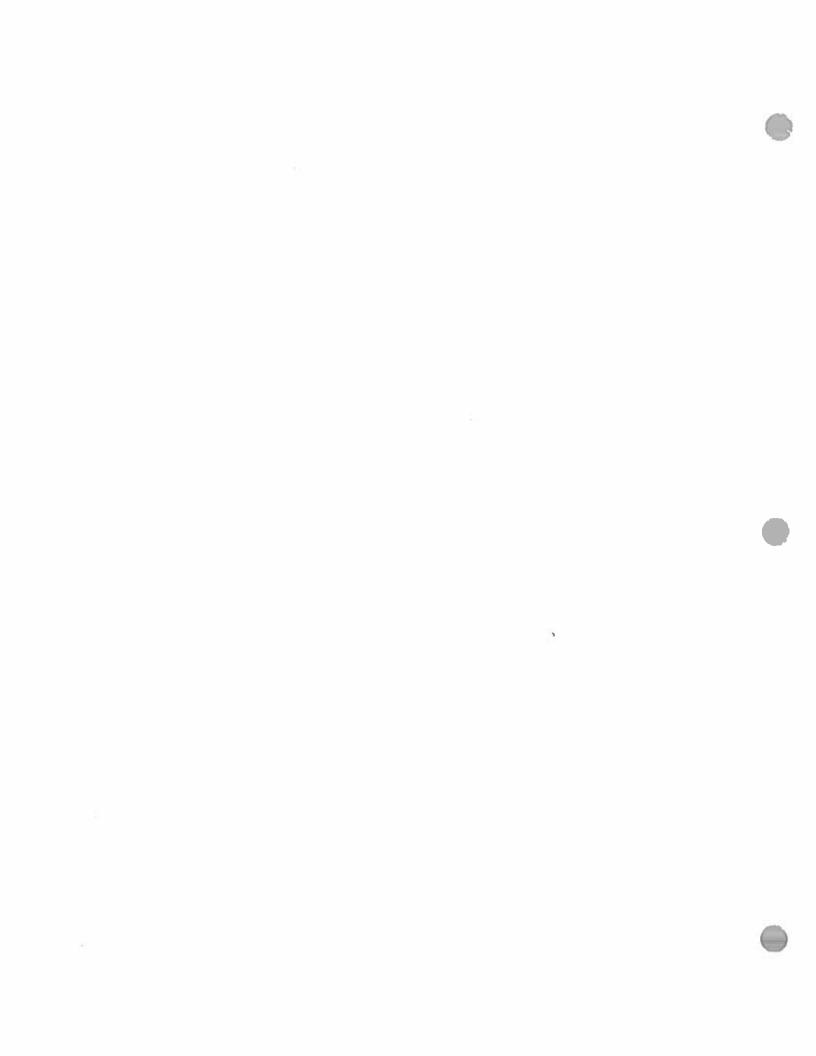

TABLE 22 POTENTIAL SITE-WIDE GHG EMISSIONS ENVIVA PELLET GREENWOOD, LLC

63,686.0 MMBtu/yr 1.0 8,760 hrs/yr	63,686.0 MMBtu/yr 2.0 8,760 hrs/yr	865 bhp 500 hrs/yr 7,000 Btu/hr/hp 6.06 MMBtu/hr	305 bhp 500 hrs/yr 7,000 Btu/hr/hp 2,14 MMBtu/hr
Operating Data: RTO-2/RCO-1 Heat Input Number of Burners Operating Schedule	RTO-3/RCO-2 Heat Input Number of Burners Operating Schedule	Emergency Generator Output Operating Schedule Power Conversion Energy Input	Fire Water Pump Output Operating Schedule Power Conversion Energy Input
200.0 MMBtu/hr 1,752,000 MMBtu/yr	5 MMBtu/hr 1 8.760 hrs/yr	8.0 MMBtu/hr 4.0 8,760 hrs/yr 7,500 MMBtu/yr	15,037.8 MMBtu/yr 8,760 hrs/yr
Dryer Heat Input Annual Heat Input	Dryer Duct Burner Heat Input Number of Burners Operating Schedule	RTO-1 Heat input Number of Burners Operating Schedule Furnace Bypass Heat Input	RTO-4/RCO-3 Burner(s) and Emissions Combustion Heat Input Operating Schedule

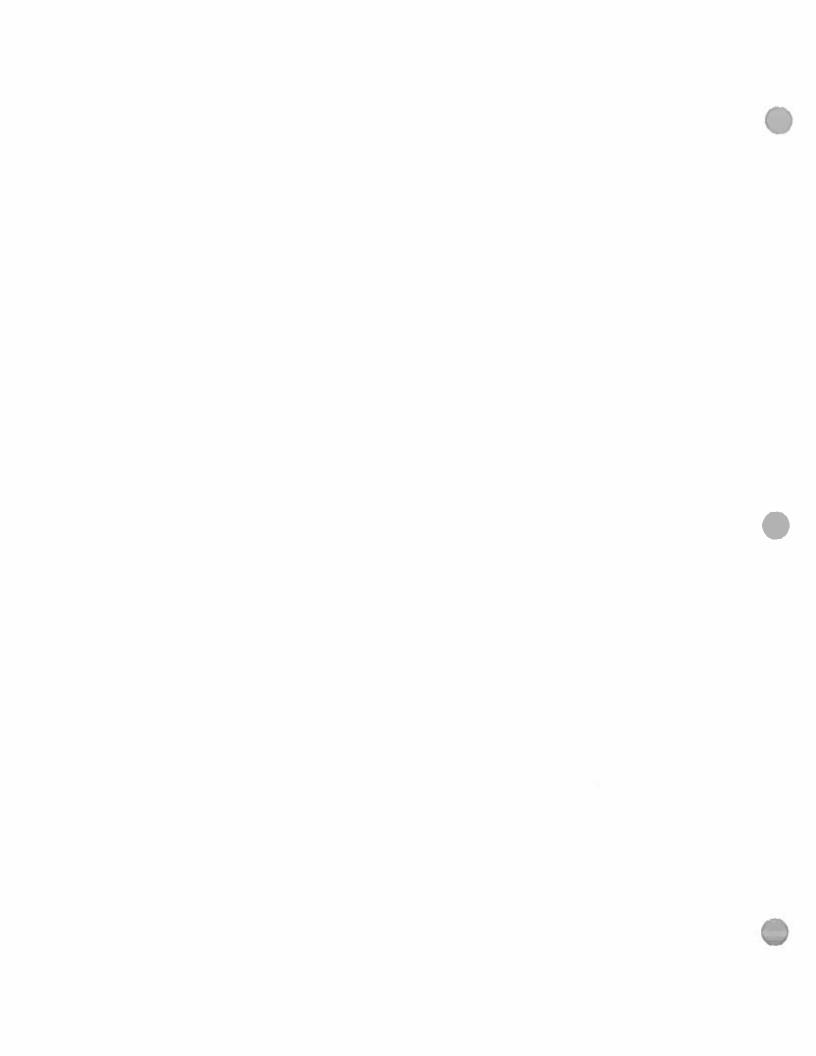
	!	Emission Fact	n Factors from Table C-1 (kg/MMBtu)	(kg/MMBtu)		Tier 1 Emissions (short tons)	s (short tons)	
Source Description	Fuel Type	CO ₂	CH4	N ₂ O	200	CH.	N ₂ O	Total CO ₂ e
Dryer	Wood and Wood Residuals	93.80	0.18	1.07	181,149	348	2,072	183,569
Dryer Duct Burner	Natural Gas	88.99	0.025	0.030	3.229	1.21	1.44	3,232
RTO-1	Natural Gas	66.88	0.025	0:030	20,666	7.72	9,21	20,683
Furnace Bypass	Wood and Wood Residuals	93.80	0.18	1,07	775	1,49	8.87	786
RTO-2/RCO-1	Natural Gas	88.99	0.025	0.030	4,695	1,76	2.09	4,699
RTO-3/RCO-2	Natural Gas	66,88	0.025	0.030	9,390	3.51	4.18	9,398
RTO-4/RCO-3	Natural Gas	66.88	0.025	0.030	1,109	0.41	0.49	1,110
Engine 1 (Generator)	No. 2 Fuel Oil (Distillate)	73.96	0.075	0.18	247	0.25	09'0	248
Engine 2 (Fire Pump)	No. 2 Fuel Oil (Distillate)	73.96	0.075	0.18	87.0	0.088	0.21	87.3

Notes:

¹ Emission factors from Table C-1 and C-2 of GHG Reporting Rule. Emission factors for methane and N₂O already multiplied by their respective GWPs of 25 and 298.


TABLE 23 PROCESS WEIGHT RATE LIMITS AND POTENTIAL EMISSION RATES ENVIVA PELLET GREENWOOD, LLC

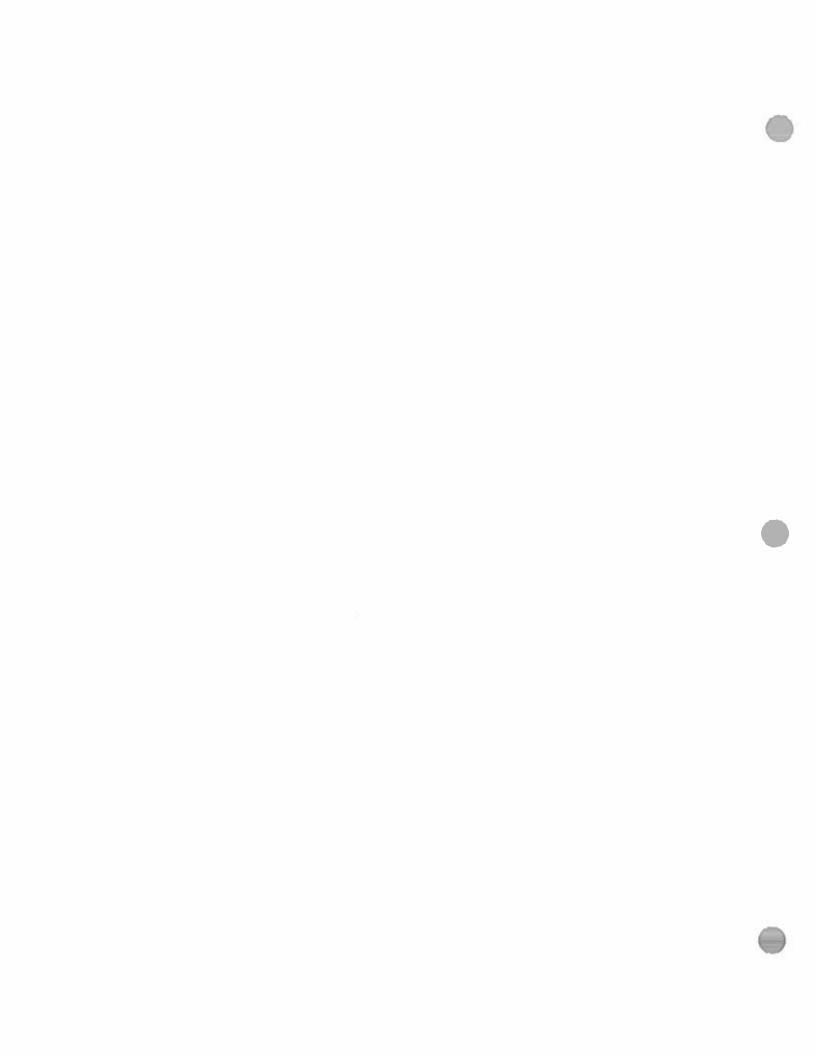
Process ID	EU ID	Source Description	Maximum Unlimited Hourly Throughput	Units	Process Weight Rate PM Limit ¹ (lb/hr)	Potential Emission Rate ⁱ (lb/hr)
	E1	Debarker	230	tph	60.04	2:70
	E2	Electric Powered Chipper	175	tph	57,07	1.68
	E3	Green Wood Screening	175	tph	57,07	0,33
PO	E4	Pile Drop	350	tph_	64.76	0.01
	E5	Storage Pile Wind Erosion	350	tph	64.76	0,65
	E46	Truck Dump 1	175	tph	57.07	0,01
	E47	Truck Dump 2	175	tph	57.07	0.01
	E6	Green Hammermill 1				
	E7	Green Hammermill 2				
	E8	Green Hammermill 3				
PI	E9	Green Hammermill 4	425	l .eb	67.29	2.57
	E58	Green Hammermill 5	435	tph	0/ 29	2,31
	E10	Green Chip Silo				
	E11	Furnace				
	E12	Dryer				
P2	E11	Furnace Bypass	85	tph	49.62	24,33
	E13	Dry Chip Silo	85	tph	49,62	0.17
P3	E59 - E94	Vertical Dry Hammermill 1 - 36	96	tph	50.87	15,06
	E19	Pelletizer Feed Silo	96	tph	50.87	0.17
	E20	Pelletizer 1				
	E21	Pelletizer 2				
	E22	Pelletizer 3				
	E24	Pelletizer 4				
	E25	Pelletizer 5				
	E26	Pelletizer 6		l		
	E28	Pelletizer 7	48	tph	44.20	4.29
	E29	Pelletizer 8				
	E30	Pelletizer 9				
	E23	Pellet Cooler 1				
	E27	Pellet Cooler 2				
	E31	Pellet Cooler 3				
P4	E32	Pelletizer 10	-			
	E33	Pelletizer 11				
	E34	Pelletizer 12				
	E36	Pelletizer 13				
	E37	Pelletizer 14				
	E38	Pelletizer 15				
	E49	Pelletizer 16	48	tph	44.20	4 29
	E50	Pelletizer 17				
	E51	Pelletizer 18				
	E35	Pellet Cooler 4				
	E39	Pellet Cooler 5				
	E52	Pellet Cooler 6				
	E40	Pellet Silo 1				
			96	tph	50 87	0.17
P5	E41	Pellet Silo 2 Loadout	150	tph	55.44	0.99
	E42 E43	Dust Silo	150	tph	12.05	0.39


Notes:

1 SC Regulation 61-62.5, Standard No. 4, Section VIII Control of PM Emissions

² Represents controlled/limited emissions.

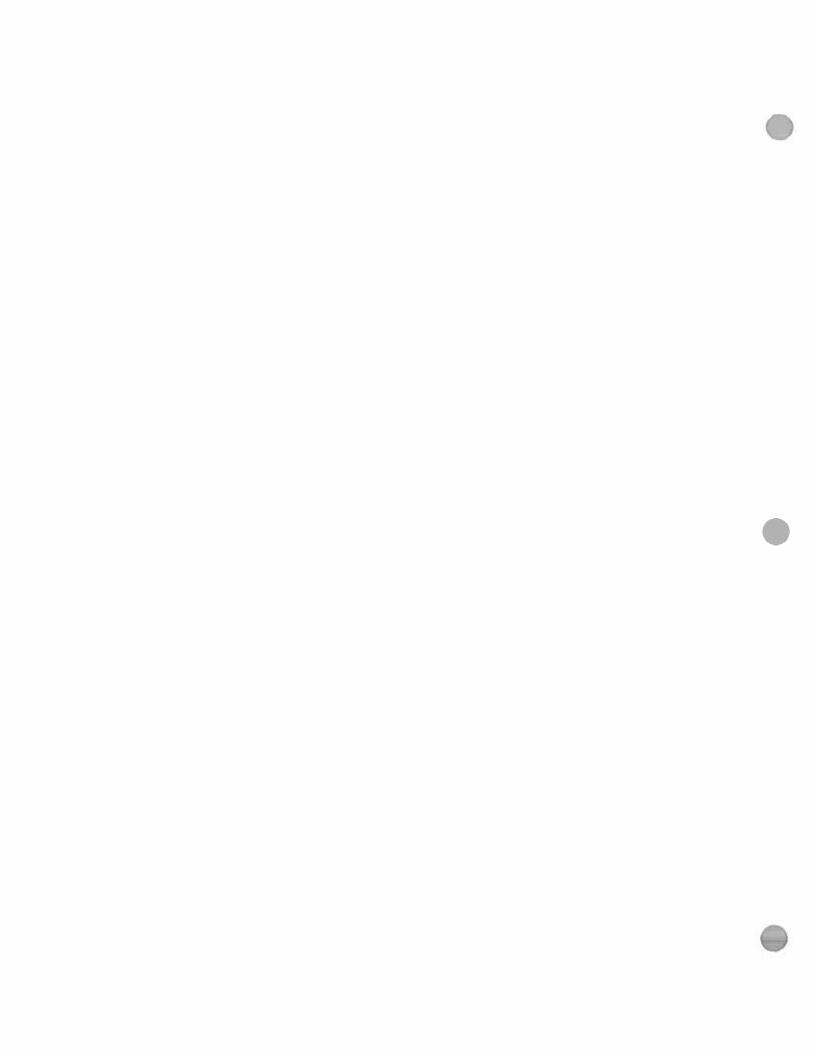
APPENDIX D
PERMIT APPLICATION FORMS



Bureau of Air Quality Construction Permit Application Facility Information Page 1 of 3

32199 - All other wood product manufacturing

	FACILITY IDE	NTIFICATION		
SC Air Permit Number (8-digits only) (Leave blank if one has never been assigned) 1240 – 0133		Application Date February 2020 (rev	. June 2020	D)
Facility Name (This should be the name used to identify the facili listed below) Enviva Pellets Greenwood, LLC	ity at the physical address	Facility Federal Tax I (Established by the U.S. In 36-1666410	dentificatio ternal Revenue	n Number 2 Service to identify a business entity)
	FACILITY PHYS	ICAL ADDRESS		
Physical Address: 200 Enviva Way				County: Greenwood
City: Greenwood		State: SC		Zip Code: 29646
Facility Coordinates (Facility coordinates shou	ld be based at the front do	or or main entrance of the		
Latitude: 34° 13′ 46.26″ N	Longitude: 82° 3′ 5′	1.28" W		(North American Datum of 1927) Or (North American Datum of 1983)
	CO LOCATION D	STEDMINATION		<u> </u>
		ETERMINATION	X No D	/es*
Are there other facilities in close proximi	ty that could be cons	rs if applicable: Not	Applicable	<u> </u>
List potential co-located facilities, includi	ng air permit numbe	chment to this application	Applicable	
-if yes, please submit co-location applicability deter	COMMUNIT	Y OUTREACH	·	
What are the potential air issues and co			ef descripti	on of potential air issues and
community concerns about the entire f	acility and/or specifi	c project. Include he	ow these is	sues and concerns are being
addressed, if the community has been informed.	informed of the pro	posed construction	project, an	d if so, how they have been
As part of the expansion, this project would the facility by authorizing the installation of a Enviva has spent the past year developing rel local organizations such as the Greenwood Cl Enviva has sponsored and participated in Greenwood Humane Society to build relation has visited with local neighbors and business neighbors include fugitive dust, excess fiber project. The facility is currently engaged in efform our neighbors. The additional emission Enviva remains committed to being a posit community relations staff will perform an outhe scope and benefits of the project throug the excess fiber inherited when Enviva purchase.	additional emissions con lationships with, and pro- hamber of Commerce, to several community events ships and establish dire ses to gauge Enviva's control pro- enhanced dust control pro- in controls authorized by ive member of the Great treach and engagements in live programs, meeti	ntrols and the impleme oviding updates to, the the Greenwood Partners ents such as Lake Greet connection to our converall performance in a traffic, which Enviva I practices that have proventially project will add fuseenwood Community. It to its partners as weings and materials. The	entation of enter facility's neighbore facility's neighbore facility manner fa	whanced dust control measures ghbors as well as community and and Preserving Lake Greenwood, anup, Woodland Clinic, and the inager. Community relations staff rhood. Concerns heard from our en to mitigate, including by this le results as reported in feedback to tangible results. Dermit application is filed, Envivagiborhood community to explain
	FACILITY'S PROD	OUCTS / SERVICES		
Primary Products / Services (List the primary Wood Pellet Manufacturing Facility Primary SIC Code (Standard Industrial Classification)	y product and/or service)		e (North Amer	ican Industry Classification System)


2499 – Wood Products, NEC

Bureau of Air Quality Construction Permit Application Facility Information Page 2 of 3

Other Products / Services (List any other prod N/A	lucts and/or services)		
Other SIC Code(s): N/A		Other NAICS Code(s): N/A	
Person at the facility wh		ACILITY CONTACT I questions about the facility and permit	application)
Title/Position: Sr, Environmental Engineer and Manager	T	First Name: Kai	Last Name: Simonsen
Mailing Address: 4242 Six Forks Road, S	uite 1050		
City: Raleigh		State: NC	Zip Code: 27609
E-mail Address: Kai.Simonsen@envivabio	mass.com	Phone No.: 948-789-3628	Cell No.: 919-428-0289
If additional individuals need o		to the designated Air Permit C nit, please provide their names a	nd e-mail addresses.
Name		t-mail	Address
		IFORMATION / DATA	
Does this application contain confidential	information or da	ata? 🔀 No 🔲 Yes*	
If yes, include a sanitized version of the application f	or public review and O	NLY ONE COPY OF CONFIDENTIAL IN	FORMATION SHOULD BE SUBMITTE
)	LIST OF FOI	RMS INCLUDED	
(le		ed in the application package)	
Form Name			led (Y/N)
Expedited Review Request (DHEC Form 2	212)	Yes 🛛 No	
Equipment/Processes (DHEC Form 2567)		Yes	
Emissions (DHEC Form 2569)		⊠ Yes	
Regulatory Review (DHEC Form 2570)		✓ Yes	
Emissions Point Information (DHEC Form	2573)	Yes No (If No, Explain)
	OWNER	OR OPERATOR	
Title/Position: Plant Manager	Salutation: Mr.	First Name: Croft	Last Name: Hollingsworth
Mailing Address: 200 Enviva Way	Januaron, IVII.	First Haine, Stott	Last Hame. Homingsmortal
City: Greenwood		State: SC	Zip Code: 29646
E-mail Address: Croft.Hollingsworth@enviv	vabiomass.com	Phone No.: 864-414-9020	Cell No.:
		RATOR SIGNATURE	
I certify, to the best of my knowledge an violated. I certify that any application for accurate, and complete based on information descriptions, which are found to be application.	m, report, or comp ation and belief for	pliance certification submitted in rmed after reasonable inquiry. I	n this permit application is true understand that any statement
ID Wollpan	<i>γ</i>	43	Date
ignature of Owner or Operator			Date

Bureau of Air Quality Construction Permit Application Facility Information Page 3 of 3

PERSON (If not the same pers	AND/OR FIRM THA on as the Professional Eng	T PREPARED THIS APPLICATI ineer who has reviewed and signed this	application.)
Consulting Firm Name: Ramboll US Co	orporation		
Title/Position: Managing Principal	Salutation: Mr.	First Name: Michael	Last Name: Carbon
Mailing Address: 8235 YMCA Plaza D	rive, Suite 300		
City: Baton Rouge		State: LA	Zip <u>Code</u> : 70810
E-mail Address: mcarbon@ramboll.co	om	Phone No.: 225-408-2691	Cell No.:
SC Professional Engineer License/Regis		able): N/A	

	PROFESSIONAL ENG	NEER INFORMATION	
Consulting Firm Name: Ramboll US Co	orporation		
Title/Position: South Region COO	Salutation: Mr.	First Name: Russell	Last Name: Kemp
Mailing Address: 1600 Parkwood Circ	le, Suite 310		
City: Atlanta	-	State: GA	Zip Code: 30339
E-mail Address: rkemp@ramboll.com		Phone No.: 678-388-1654	Cell No.:
SC License/Registration No.: 15807	ij.		
	PROFESSIONAL EN	GINEER SIGNATURE	

I have placed my signature and seal on the engineering documents submitted, signifying that I have reviewed this construction permit application as it pertains to the requirements of South Carolina Regulation 61-62, Air Pollution Control Regulations and Standards.

Signature of Professional Engineer

25 JUNE 2020

Bureau of Air Quality Construction Permit Application Equipment / Processes Page 1 of 10

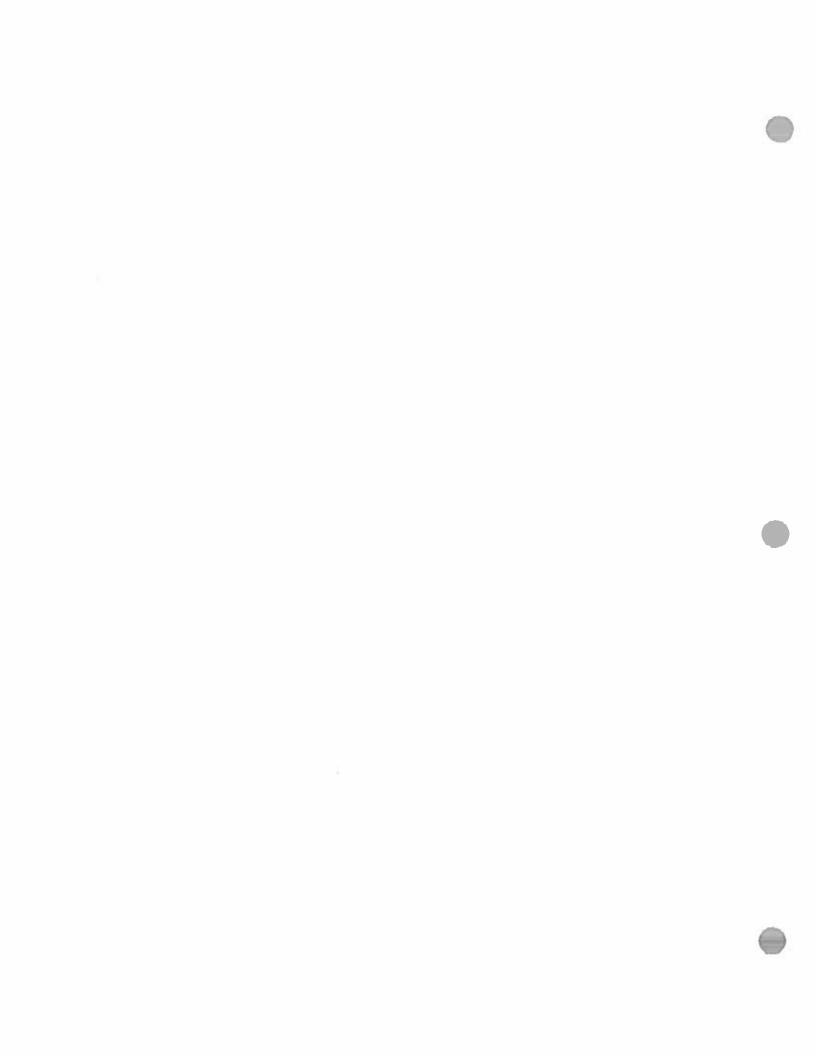
APPLICATION IDENTIFICATION

Application Date (Please ensure that the information list in this table is the same on all of the forms and required information submitted in this construction permit application package.)

Facility Name (This should be the name used to identify the facility)

Enviva Pellets Greenwood, LLC

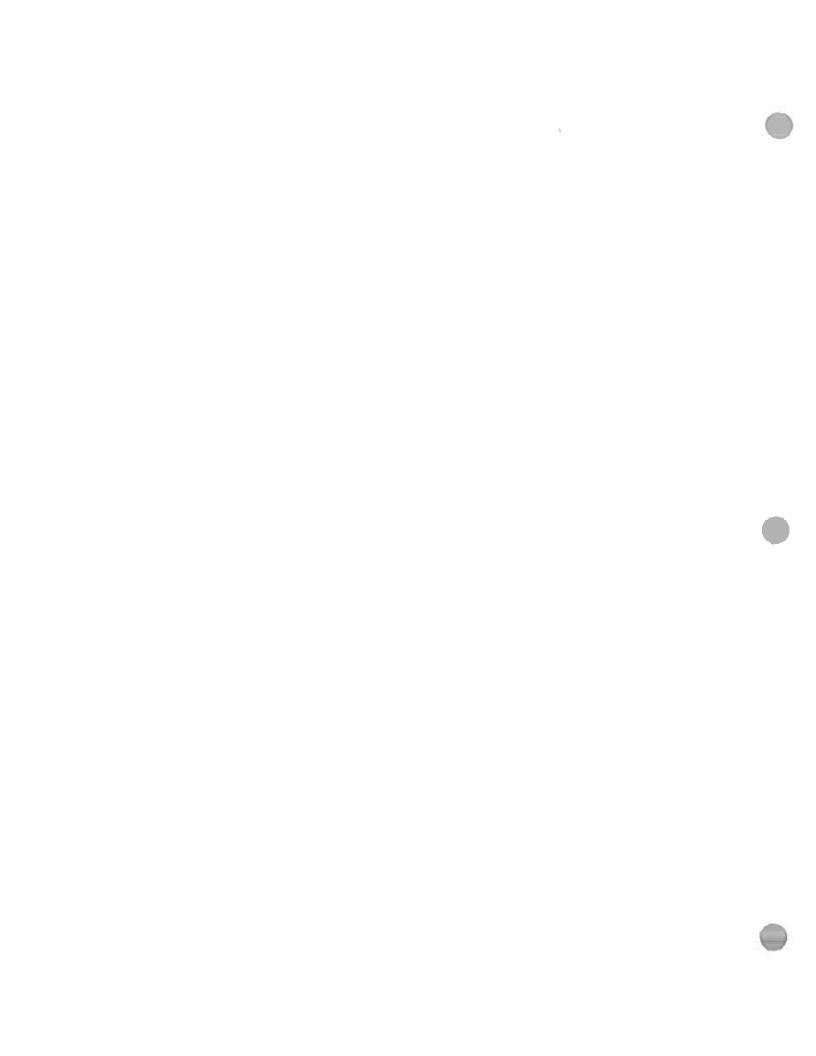
SC Air Permit Number (8-digits only) (Leave blank if one has never been assigned)
1240 – 0133


February 2020 (rev. June 2020)

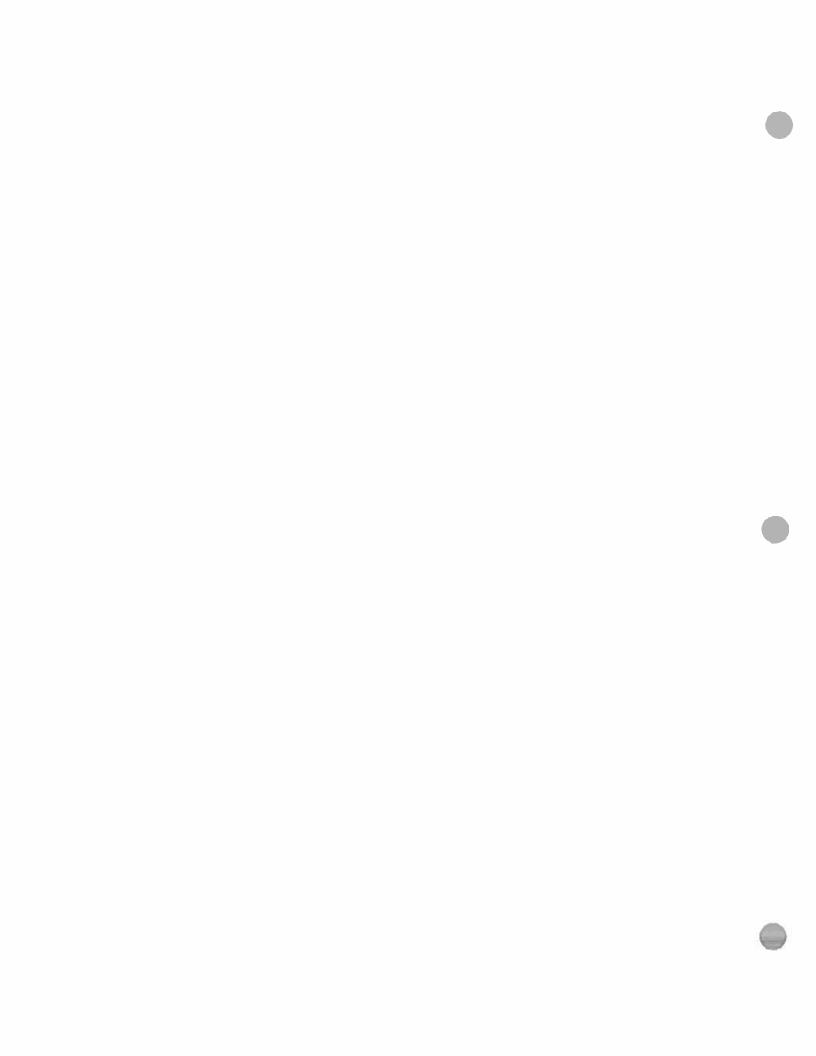
PROJECT DESCRIPTION

Brief Project Description (What, why, how, etc.): Enviva is requesting planned changes for the Greenwood plant to increase the pellet production rate and reduce emissions from the DHMs, as well as other changes described in detail in the permit application report.

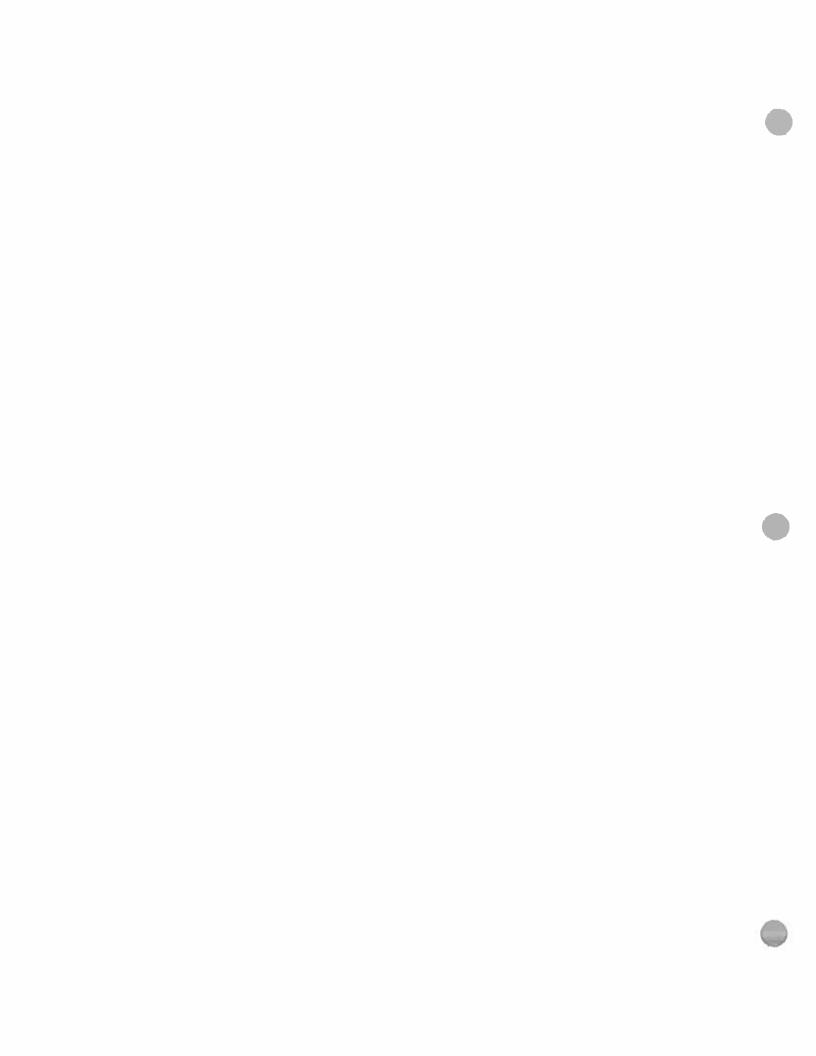
ATTACHMENTS


Location in Application: Appendix B	Location in Application: Application Report, Sections 1 and 2
N Process Flow Diagram	Detailed Project Description

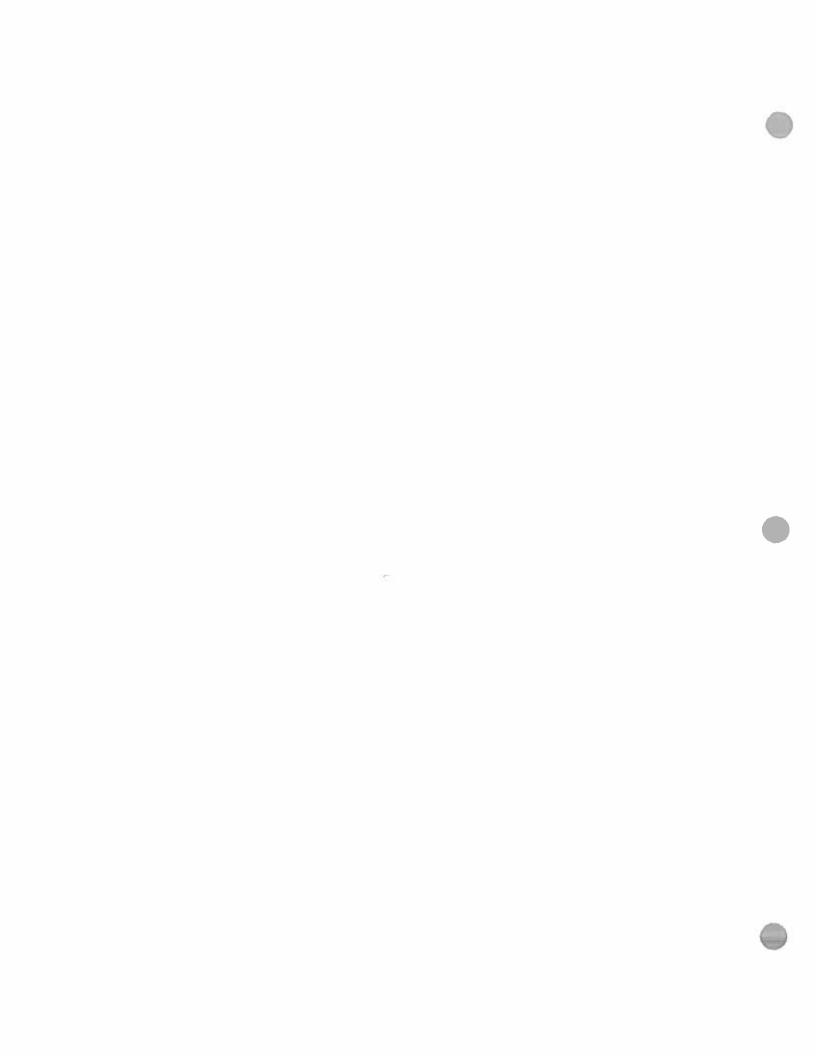
Bureau of Air Quality Construction Permit Application Equipment / Processes Page 2 of 10


		EQUIPM	EQUIPMENT / PROCESS INFORMATION	INFORMATIO	Z		
Equipment ID Process ID	Action	Equipment / Process Description	Maximum Design Capacity (Units)	Control Device ID(s)	Pollutants Controlled (Include CAS#)	Capture System Efficiency and Description	Emission Point ID(s)
P0/E1	Add Remove Modify	Debarking	115 ODT/hr	None	None	Not applicable	OS
P0/E2	Add Remove Modify	Chipping	88 ODT/hr	None	None	Not applicable	OS S
P0/E3	Add Remove Modify	Screening	88 ODT/hr	None	None	Not applicable	SO
P0/E4	Add Remove Modify Other	Pile Drop	96 ODT/hr	None	None	Not applicable	So
P0/E5	Add Remove Modify Other	Pile Erosion	165,000 ft² total outer surface area	None	None	Not applicable	OS .
P0/E46	Add Remove Modify Other	Truck Dump 1	88 ODT/hr	None	None	Not applicable	SO
P0/E47	Add Remove Modify Other	Truck Dump 2	88 ODT/hr	None	None	Not applicable	SO
P1/E6	Add Remove Modify	Green Hammermill 1	75 ODT/hr	CD2, CD3	PM ₁₀ , PM _{2.5} , VOC, HAP, TAP	100% (ductwork)	2
P1/E7	Add Remove Modify	Green Hammermill 2	(total for all)	CD2, CD3	PM ₁₀ , PM ₂₅ , VOC, HAP, TAP	100% (ductwork)	

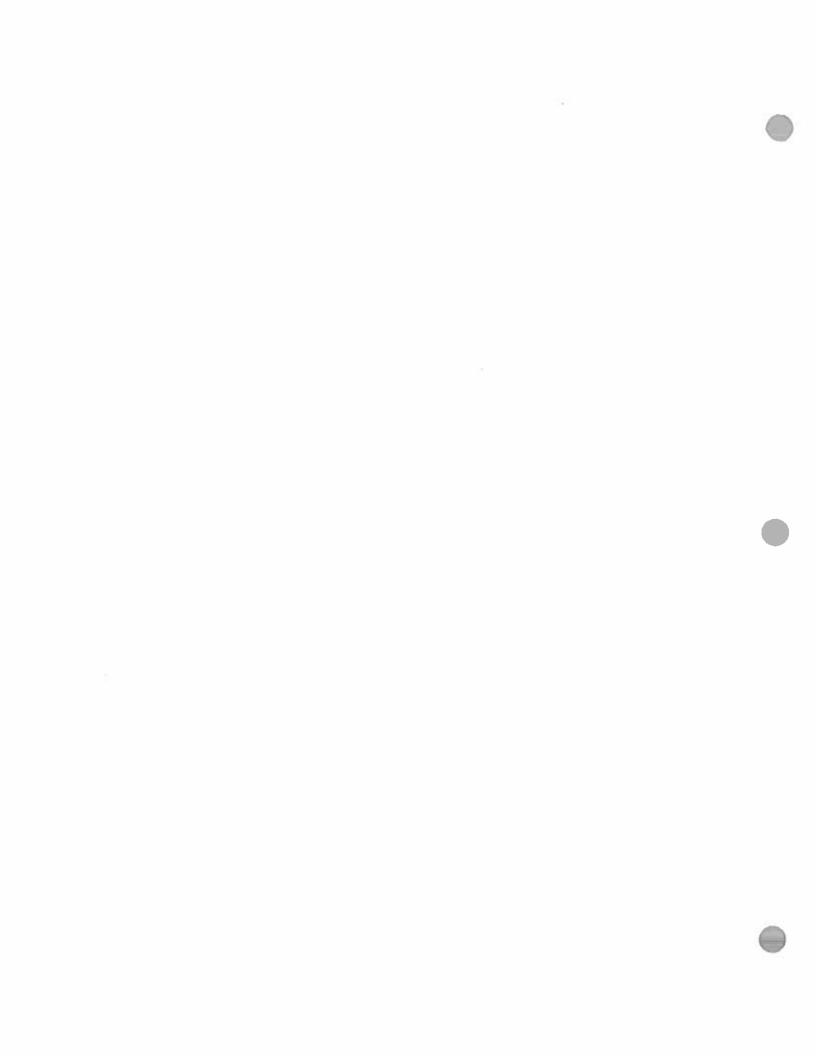
Bureau of Air Quality Construction Permit Application Equipment / Processes Page 3 of 10


P1/E8	Add Remove	Green Hammermill 3		CD2, CD3	PM ₁₀ , PM _{2.5} ,	100% (ductwork)	
	Other O	200			VOC, HAP, TAP		
P1/E9	Add Remove Modify	Green Hammermill 4	75 ODT/hr (total for all)	CD2, CD3	PM ₁₀ , PM _{2.5} , VOC, HAP, TAP	100% (ductwork)	
P1/E58	Add Remove Modify	Green Hammermill 5		CD2, CD3	PM ₁₀ , PM _{2.5} , VOC, HAP, TAP	100% (ductwork)	ŭ
P1/E10	Add Remove Modify Other	Green Chip Silo	75 ODT/hr	CD2, CD3	PM ₁₀ , PM _{2.5} , VOC, HAP, TAP	100% (ductwork)	5,10
P2/E11	Add Remove Modify	Furnace	200 MMBtu/hr		PM10, PM2.5,	100% (ductwork)	
P2/E12	Add Remove Modify	Dryer	75 ODT/hr	CDZ, CD3	VOC, НАР, ТАР	100% (ductwork)	
P2/E48	Add Remove Modify	Dryer Duct Burner	5 MMBtu/hr	None	None	Not Applicable	S16
P2/E13	Add Remove Modify	Dry Chip Silo	88 ODT/hr	CD4	PM10, PM2.5	100% (ductwork)	25
P3/E14	Add Remove Modify	Dry Hammermill 1					
P3/E15	Add Remove Modify	Dry Hammermill 2					

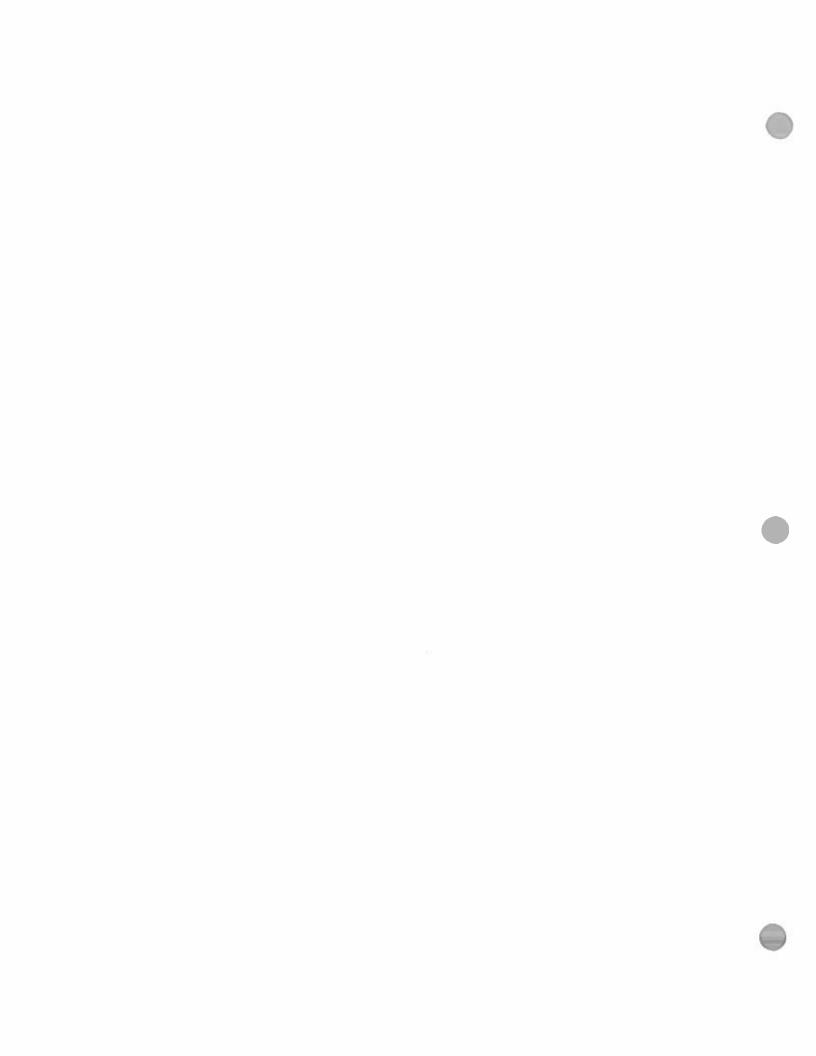
Bureau of Air Quality Construction Permit Application Equipment / Processes Page 4 of 10


P3/E16	Add Remove	Dry Hammermill 3					
P3/E17	Add Remove Modify Other	Dry Hammermill 4					
P3/E18	Add Remove Modify Other	Dry Hammermill 5					
P3/E59 – E94	Add Add Remove Modify	Vertical Dry Hammermill 1 through Vertical Dry Hammermill 36	88 ODT/hr (total for all)	See application narrative and process flow diagram	PM ₁₀ , PM _{2.5} , VOC, HAP, TAPs	100% (ductwork)	25
P3/E19	Add Remove Modify Other	Pelletizer Feed Silo	88 ODT/hr	CD10	PM ₁₀ , PM _{2.5}	100% (ductwork)	S4
P4/E20	Add Remove Modify Other	Pelletizer 1					
P4/E21	Add Remove Modify Other	Pelletizer 2	45 ODT/hr	CD14a - c,	PM10, PM2.5,	(1,000,000,000,000,000,000,000,000,000,0	ě
P4/E22	Add Remove Modify Other	Pelietizer 3	(total for all)	CD15	VOC, НАР, ТАР	Caucimork)	ç,
P4/E24	Add Remove Modify	Pelletizer 4					

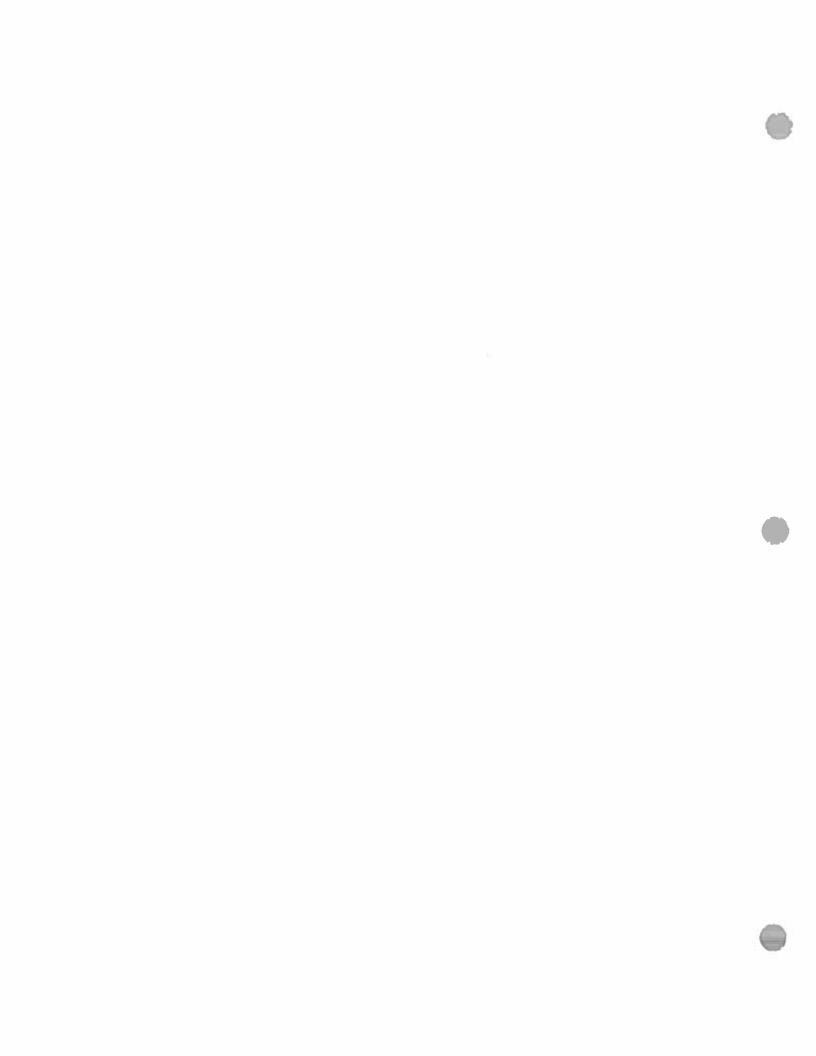
Bureau of Air Quality Construction Permit Application Equipment / Processes Page 5 of 10

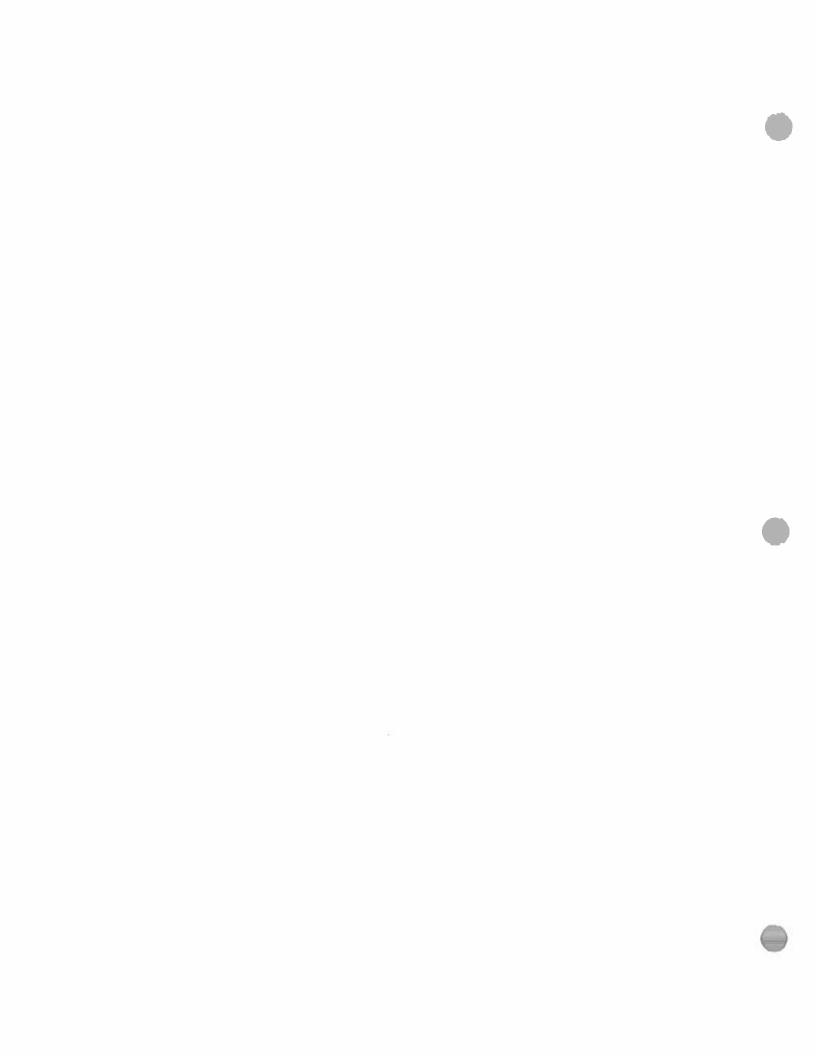

								8	8
								(Jacontonia) Society	(Alcharate) & Contractor)
								PM10, PM2.5,	VOC, HAP, TAP
								CD18a - c,	CD19
								45 ODT/hr	(total for all)
Pelletizer 5	Pelletizer 6	Pelletizer 7	Pelletizer 8	Pelletizer 9	Pellet Cooler 1	Pellet Cooler 2	Pellet Cooler 3	Pelletizer 10	Pelletizer 11
Add Remove Modify Other	Add Remove Modify	Add Remove Modify Other	Add Remove Modify	Add Remove Modify Other	Add Remove Modify				
P4/E25	P4/E26	P4/E28	P4/E29	P4/E30	P4/E23	P4/E27	P4/E31	P4/E32	P4/E33

Bureau of Air Quality Construction Permit Application Equipment / Processes Page 6 of 10


Pelletizer 12	Pelletizer 13	Pelletizer 14	Pelletizer 15	Pelletizer 16	Pelletizer 17	Pelletizer 18	Pellet Cooler 4	Pellet Cooler 5	Pellet Cooler 6
P4/E34 Nemove	P4/E36 Remove	P4/E37 Remove	P4/E38 Nodify	P4/E49 Add Remove Modify	P4/E50 Remove Modify	P4/E51	P4/E35 Nodify	P4/E39 Modify	P4/E52

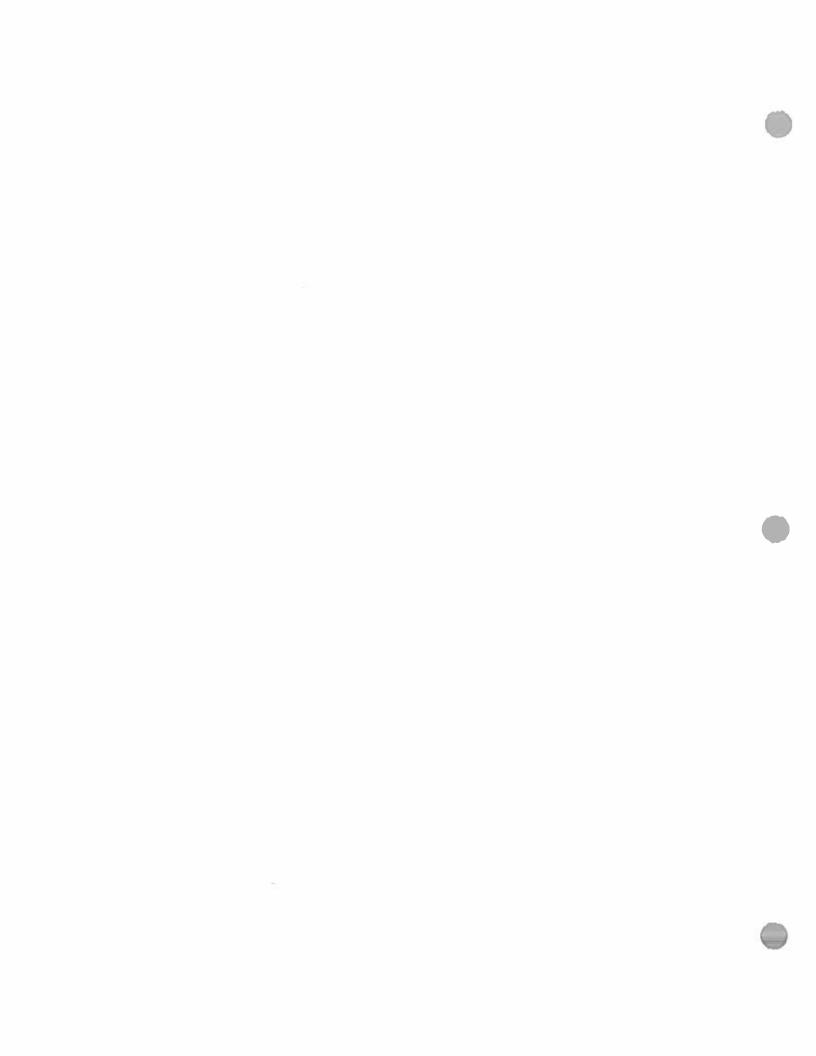
Bureau of Air Quality Construction Permit Application Equipment / Processes Page 7 of 10


Add


Bureau of Air Quality Construction Permit Application Equipment / Processes Page 8 of 10

S	3
Not Applicable	Not Applicable
None	None
None	None
N/A	N/A
Unpaved Roads	Paved Roads
Add Remove	Add Remove Modify Other
P7/E56	P7/E57

Bureau of Air Quality Construction Permit Application Equipment / Processes Page 9 of 10

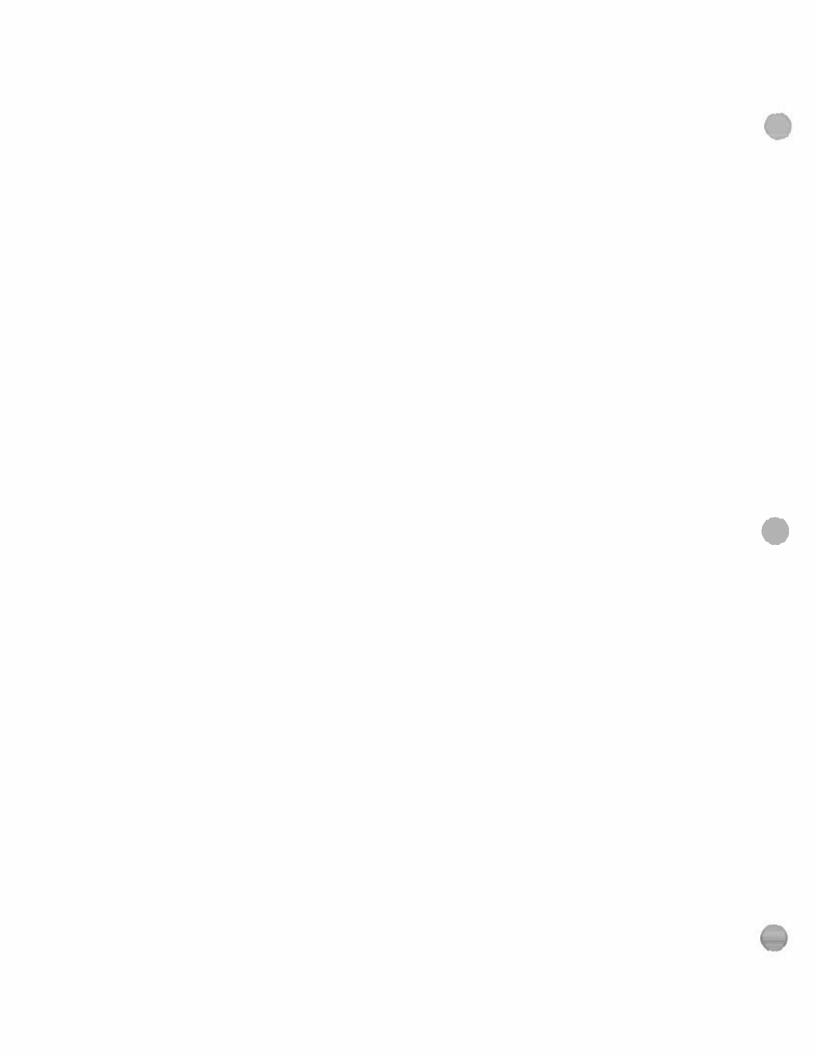


Bureau of Air Quality Construction Permit Application Equipment / Processes Page 10 of 10

	RAW MATERIAL AND PRODUCT INFORMATION	ICT INFORMATION	
Equipment ID Process ID Control Device ID	Raw Material(s)	Product(s)	Fuels Combusted
E1-E5,E46-E47 P0	Logs Green Chips	Green Chips, Bark	N/A
E6 – E10, E58 P1	Green Chips	Green Chips	N/A
E11 – E13, E48 P2 CD3	Fuel Green Chips	Heat Dry Chips	Bark, Natural Gas (for oxidizer and duct burner), and Diesel (for cold startups)
E59 – E94 P3	Dry Chips	Milled Chips	N/A
E19 P3	Milled Chips	Milled Chips	N/A
E20 – E39, E49 – E52 P4 CD15, CD19	Milled Chips	Pellets	Natural Gas (for oxidizer)
E40-E43 P5	Pellets	Pellets	N/A
E44, E45, E53-E55 P6	Fuel	Power	Diesel

		MONITORING AND REPORTING INFORMATION	DRTING INFORMATION		
Equipment ID Process ID Control Device ID	Poilutant(s)/Parameter(s) Monitored	Monitoring Frequency	Reporting Frequency	Monitoring/Reporting Basis	Averaging Period(s)
CD24	Pressure Drop	Once per shift	Semiannual	Established Range	None
CD18c	Pressure Drop	Once per shift	Semiannual	Established Range	None
CD3					
CD15		2	No changes proposed		
CD19					

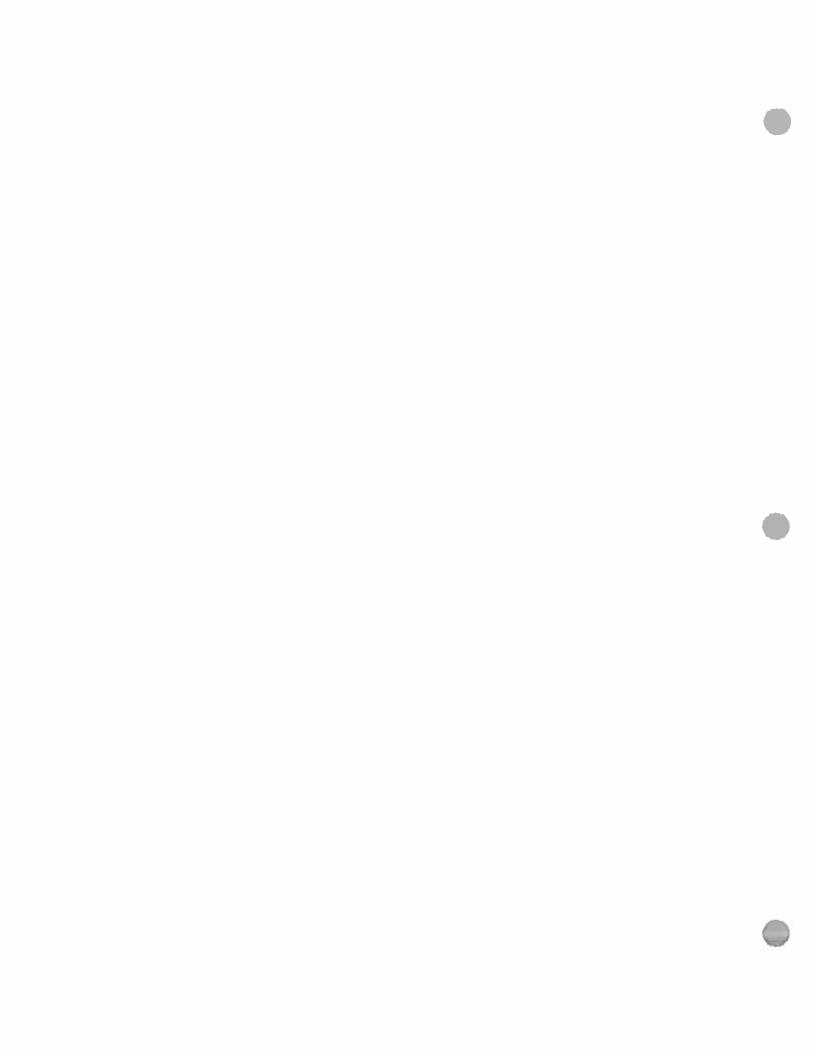
Bureau of Air Quality Construction Permit Application Emissions Page 1 of 4


	Application Identification	
(Please ensure that the information list in this tab	le is the same on all of the forms and required information submitted in t	his construction permit application package.)
Facility Name	SC Air Permit Number (8-digits only)	Application Date
(This should be the name used to identify the facility)	(Leave blank if one has never been assigned)	
Enviva Pellets Greenwood, LLC	1240-0133	February 2020 (rev. June 2020)
	Attachments	(2000)
	(Check all the appropriate checkboxes if included as an attachment)	
Sample Calculations, Emissions Factors Used, etc.	✓ Detailed Explanation of Assumptions, Bottlenecks, etc.	
Supporting Information: Manufacturer's Data, etc.	Source Test Analysis	
Details on Limits Being Taken for PTF Emissions	NSR Analysis	

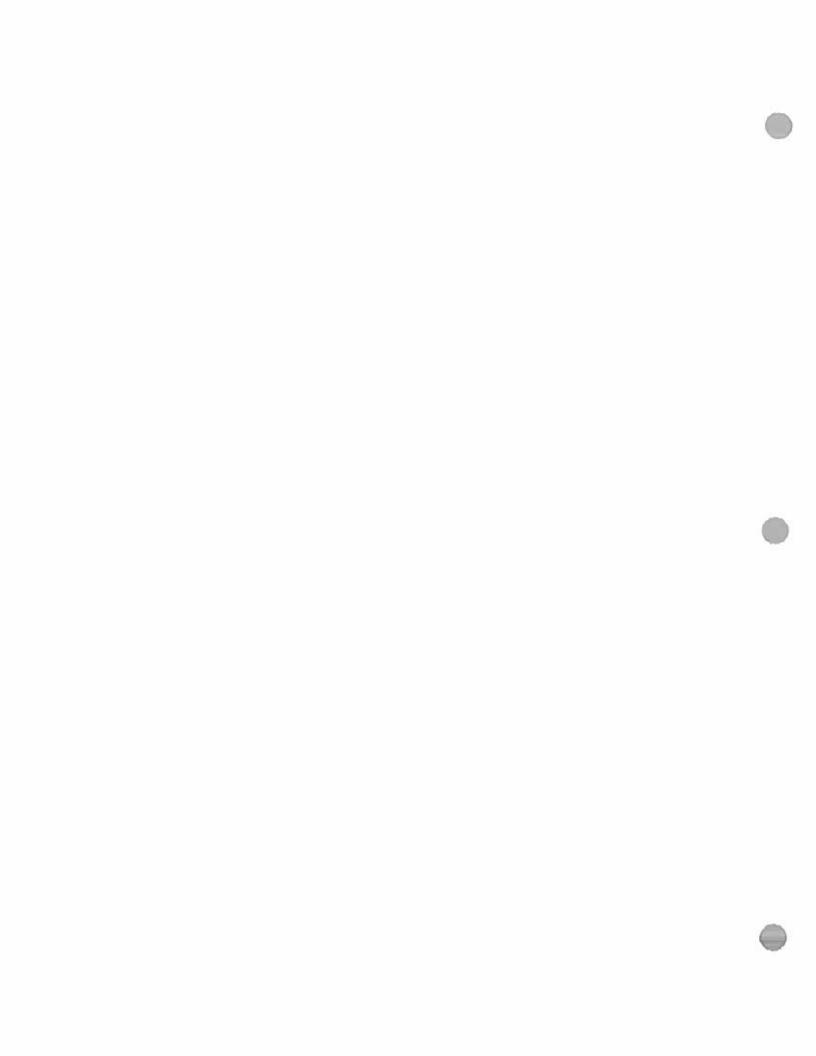
Summary of Projected Facility-Wide Potential Emissions

		(Calculated a	t maximum	design capacity.)				
Pollutants		s Prior to Cons ation (tons/yo lombo Basis	•	Colombo Per	ation (tons/y	ear) ions Plus	Modifi	tes After Cons cation (tons/y Enviva Basis	•
	Uncontrolled	Controlled	Limited	Uncontrolled	Controlled	Limited	Uncontrolled	Controlled	Limited
PM	13,948	151	148	14,289	281	174	12,684	283	168
PM10	13,948	151	148	14,109	253	157	9,667	206	103
PM2.5	11,958	132	128	12,047	215	131	9,102	179	89
SO ₂		22.5		27	27	23	27	27	22
NO_{χ}		249		292	292	252	158	166	125
со		249		361	361	253	173	216	100
VOC	2906	305	247	2,909	308	247	2,491	138	120
Pb	0	0	0	5.10E-02	1.20E-02	3.34E-03	5.10E-02	1.20E-02	3.34E-03
Highest HAP Prior to Construction (Cas # 50-00-0): Formaldehyde	17.2	1.60	1.33	18.0	2.41	1.35	91.4	5.67	4.40
Highest HAP After Construction (Cas # 50-00-0): Formaldehyde	17.2	1.60	1.33	18.0	2.41	1.35	91.4	5.67	4.40
Total HAP Emissions	52.1	5.10	4.22	57.9	10.9	4.38	416.35	29.18	22.40

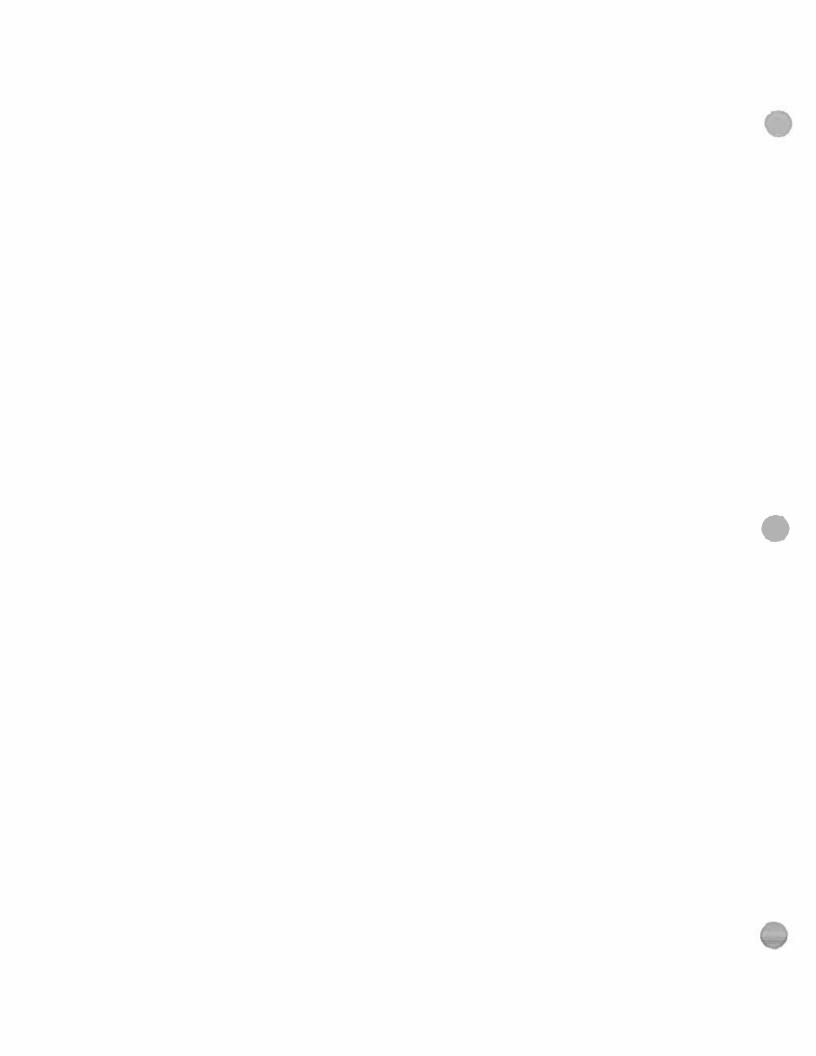
Include emissions from exempt equipment and emission increases from process changes that were exempt from construction permits.


(*All HAP emitted from the various equipment or processes must be listed in the appropriate "Potential Emission Rates at Maximum Design Capacity" Table)

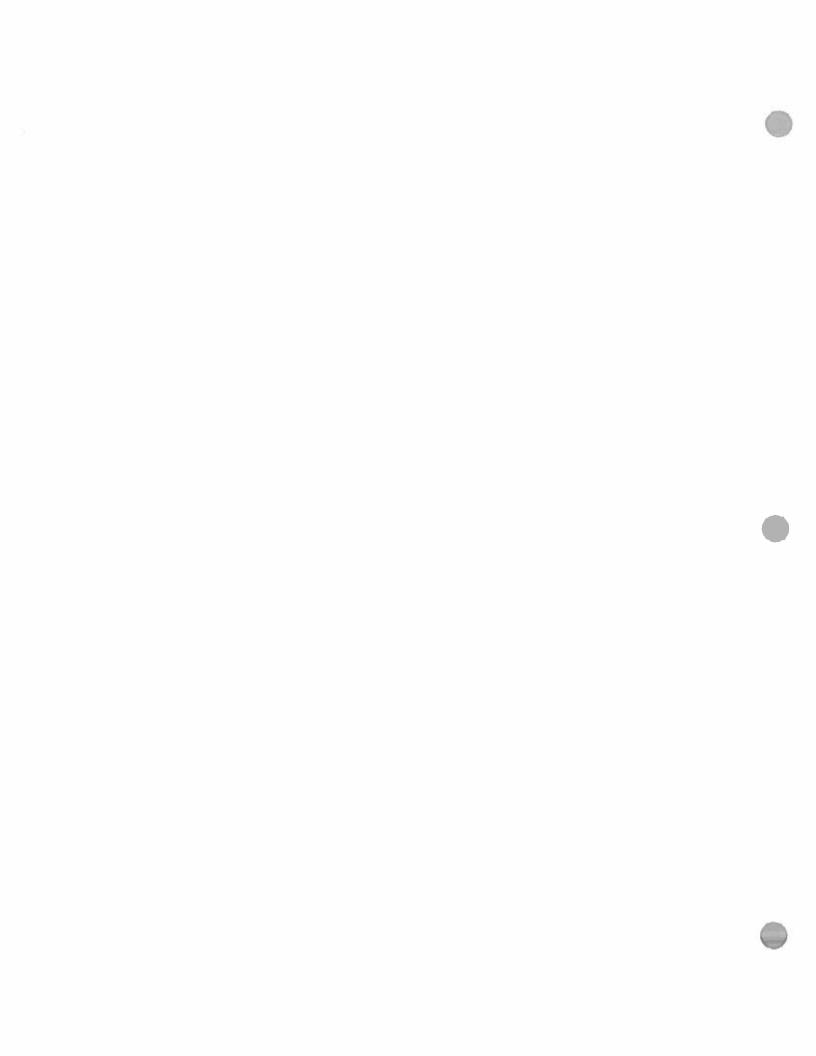
Bureau A Quality Construction Permit Application Emissions


		Poi	Potential Emission Rates at Maximum Design Capacity	acity		!	i		
Equipment ID	Emission Doint IO	Dollutante	Calculation Methods / Limits Taken / Other	Uncon	Uncontrolled	Contr	Controlled	Lim	Limited
/ Process ID			Comments	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
		PM		2.70	11.82	2.70	11.82	2.70	10.28
P0/E1	S	PM ₁₀	Refer to emission calculation tables	0.07	0.32	0.07	0.32	0.07	0.28
		PM _{2.5}		0.01	0.05	0.01	0.05	0.01	0.05
0		NOC		0.44	1.92	0.44	1.92	0.44	1.92
		Methanol		0.09	0.38	0.09	0.38	0.09	0.38
P0/E2	S	PM	Refer to emission calculation tables	1.68	7.36	1.68	7.36	1.68	7.36
		PM ₁₀		0.84	3.68	0.84	3.68	0.84	3.68
		PM _{2.5}		0.84	3.68	0.84	3.68	0.84	3.68
		PM		0.33	1.46	0.33	1.46	0.33	1.46
P0/E3	S	PM ₁₀	Refer to emission calculation tables	0.33	1.46	0.33	1.46	0.33	1.46
		PM _{2.5}		0.33	1.46	0.33	1.46	0.33	1.46
		PM		0.01	90'0	0.01	90.0	0.01	90.0
P0/E4	SS.	PM ₁₀	Refer to emission calculation tables	6.16E-03	0.03	6.16E-03	0.03	6.16E-03	2.14E-03
		PM _{2.5}		9.33E-04	4.09E-03	9.33E-04	4.09E-03	9.33E-04	4.09E-03
		PM		0.65	2.83	0.65	2.83	9.65	2.83
PO/FS	S	PM ₁₀	Dafor to amireion rejection to adopt	0.32	1.41	0.32	1.41	0.32	1.41
1	3	PM _{2.5}		0.05	0.21	0.05	0.21	0.05	0.21
		VOC		69.0	3.03	69.0	3.03	69.0	3.03
		PM		5.88E-03	0.03	5.88E-03	0.03	5.88E-03	0.03
P0/E46	S	PM ₁₀	Refer to emission calculation tables	2.78E-03	0.01	2.78E-03	0.01	2.78E-03	0.01
		PM _{2.5}		4.21E-04	1.84E-03	4.21E-04	1.84E-03	4.21E-04	1.84E-03
		PM		5.88E-03	0.03	5.88E-03	0.03	5.88E-03	0.03
P0/E47	S	PM ₁₀	Refer to emission calculation tables	2.78E-03	0.01	2.78E-03	0.01	2.78E-03	0.01
		PM _{2.5}		4.21E-04	1.84E-03	4.21E-04	1.84E-03	4.21E-04	1.84E-03

Bureau Auality Construction Permit Application Emissions


		Pot	Potential Emission Rates at Maximum Design Capacity	city					
Equipment ID	4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	- II - 4	Calculation Methods / Limits Taken / Other	Uncontrolled	trolled	Contr	Controlled	Limited	ted
/ Process ID	Emission Point ID	Pollutants	Comments	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
		00		13.65	59.80	13.65	59.80	13.65	59.80
		NON		25.59	112.07	25.59	112.07	25.59	112.07
		PM		256.77	1,125	2.57	11.25	2.57	11.25
		PM ₁₀		256.77	1,125	2.57	11.25	2.57	11.25
P1/E6-E10,		PM _{2.5}		256.77	1,125	2.57	11.25	2.57	11.25
E58; P2/E11-	51	, 2O ₂	Refer to emission calculation tables	2.00	21.90	5.00	21.90	5.00	21.90
E12		VOC		187.30	820.37	9.36	41.02	9:36	41.02
		Acetaldehyde		14.05	61.53	0.70	3.08	0.70	3.08
		Phenol		11.29	49.47	0.56	2.47	0.56	2.47
		Methanol		11.12	48.71	0.56	2.44	0.56	2.44
		Acrolein		9.11	39.92	0.46	2.00	0.46	2.00
		00		25.35	110.38	25.35	110.38	25.35	2.25
		NOx		9.84	40.47	9.84	40.47	9.84	0.83
		PM		24.33	106.15	24.33	106.15	24.33	2.16
		PM ₁₀		21.81	95.11	21.81	95.11	21.81	1.94
P2/E11		PM _{2.5}		18.87	82.23	18.87	82.23	18.87	1.68
(Furnace	\$15	502	Refer to emission calculation tables	1.06	4.60	1.06	4.60	1.06	0.09
Bypass)		VOC		0.72	3.13	0.72	3.13	0.72	90.0
		Acrolein		0.12	0.53	0.12	0.53	0.12	0.003
		Formaldehyde		0.13	0.58	0.13	0.58	0.13	3.30E-03
		Hydrochloric acid		0.57	2.50	0.57	2.50	0.57	0.01
		Manganese		0.05	0.21	0.05	0.21	0.05	1.20E-03
		PM		17.14	75.09	0.17	0.75	0.17	0.75
02/513	ε	PM ₁₀		17.14	75.09	0.17	0.75	0.17	0.75
r2/E13	75	PM _{2.5}	Refer to emission talkaration faures	17.14	75.09	0.17	0.75	0.17	0.75
		VOC		1.25	5.50	1.25	5.50	1.25	4.69

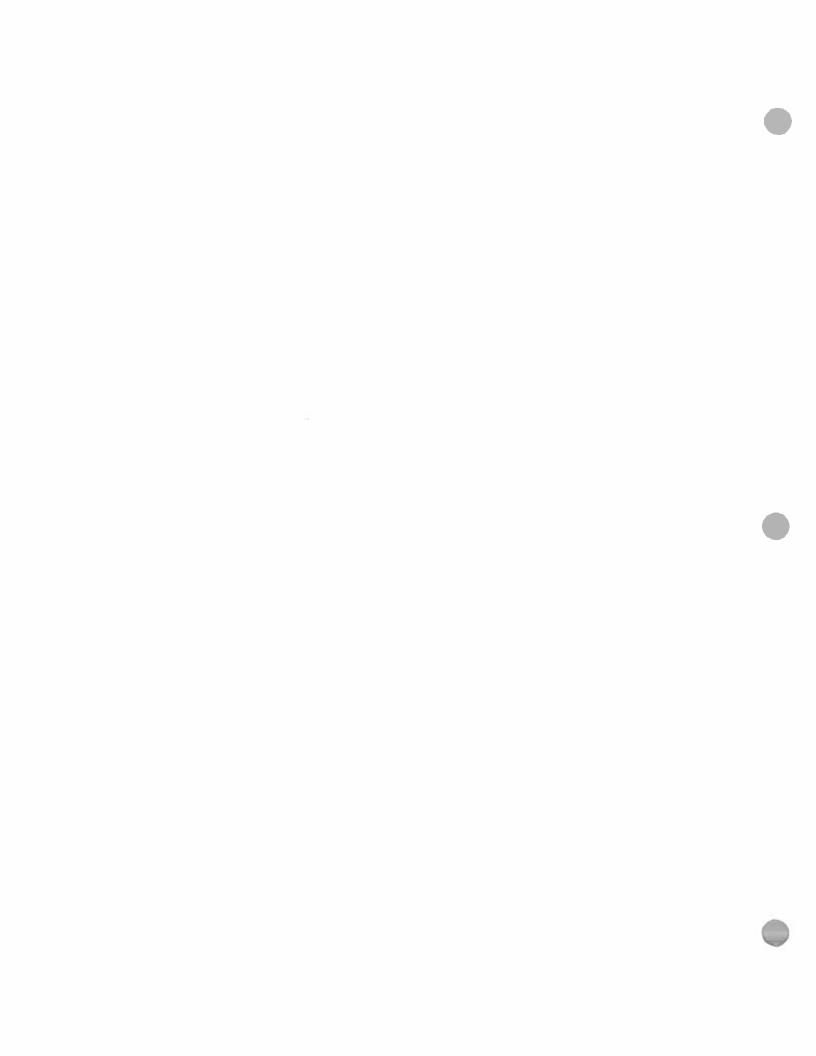
Bureau Ar Quality Construction Permit Application Emissions


		Pot	Potential Emission Rates at Maximum Design Capacity	scity					
Equipment 1D	-		Calculation Methods / Limits Taken / Other	Uncontrolled	rolled	Controlled	polled	Limited	ed
/ Process ID	Emission Point ID	rollucants	Comments	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
		00		0.41	1.80	0.41	1.80	0.41	1.80
		NOx		0.49	2.15	0.49	2.15	0.49	2.15
		PM		0.04	0.16	0.04	0.16	0.04	0.16
		PM ₁₀		0.04	0.16	0.04	0.16	0.04	0.16
		PM _{2.5}		0.04	0.16	0.04	0.16	0.04	0.16
P2/E48	S16	s0 ₂	Refer to emission calculation tables	2.94E-03	0.01	2.94E-03	0.01	2.94E-03	0.01
		NOC NOC		0.03	0.12	0.03	0.12	0.03	0.12
		Ammonia		0.02	0.07	0.02	0.07	0.02	0.07
		Formaldehyde		3.68E-04	1.61E-03	3.68E-04	1.61E-03	3.68E-04	0.002
		Hexane		8.82E-03	0.04	8.82E-03	0.04	8.82E-03	0.04
		Toluene	a position of the contract of	1.67E-05	7.30E-05	1.67E-05	7.30E-05	1.67E-05	0.000
		00		•	•	0.17	0.73	0.17	0.62
		NOx		•	•	0.20	0.86	0.20	0.74
-		PM		1,506	6,596	15.06	65.96	15.06	56.27
		PM10		1,506	965'9	15.06	65.96	15.06	56.27
P3/E59	5	PM _{2.5}	Refer to emission calculation tables	1,506	6,596	15.06	96:39	15.06	56.27
through E94	<u> </u>	NOC		108.80	476.54	5.44	23.83	5.44	20.33
		Acetaldehyde		0.64	2.79	0.03	0.14	0.03	0.12
		Acrolein		96.0	4.19	0.05	0.21	0.05	0.18
		Methanol		0.52	2.27	0.03	0.11	0.03	0.10
		Propionaldehyde		1.09	4.79	0.05	0.24	0.05	0.20
		PM		17.14	75.09	0.17	0.75	0.17	0.75
02/610	2	PM ₁₀	and determination in a motivation of soft of	17.14	75.09	0.17	0.75	0.17	0.75
77/6	ξ	PM _{2.5}		17.14	75.09	0.17	0.75	0.17	0.75
		NOC		0.02	80.0	0.02	0.08	0.02	0.07

Bureau Cousiity Construction Permit Application Emissions

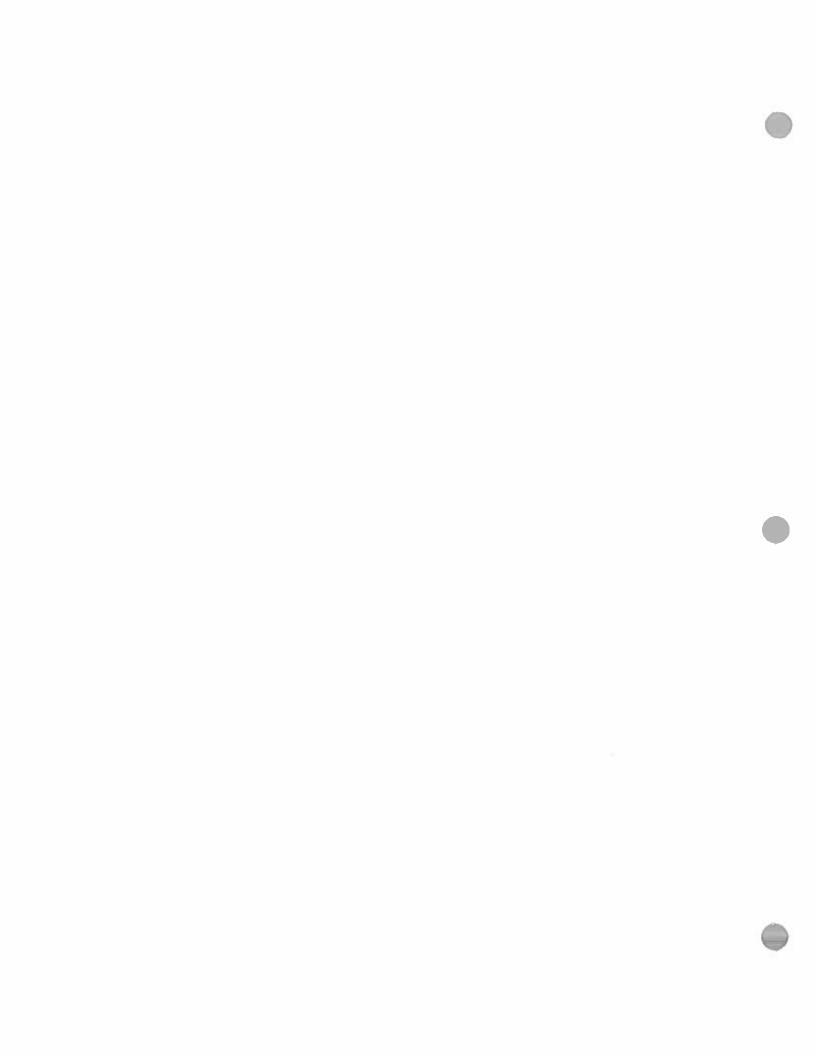
		Po	Potential Emission Rates at Maximum Design Capacity	city	8				
Equipment 1D	Emissian Daint ID	Dollistante	Calculation Methods / Limits Taken / Other	Uncontrolled	rolled	Controlled	olled	Limited	ted
/ Process ID	Elinssion Point ID	rollutalits	Comments	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
		00		•		4.84	21.22	4.84	17.62
		NOX		•	-	0.82	3.58	0.82	2.97
		PM		428.57	1,877	4.32	18.94	4.32	18.94
		PM ₁₀		111.86	489.93	1.16	5.07	1.16	5.07
		PM _{2.5}		69.13	251.46	69.0	2.51	69.0	2.51
P4/E20-E31	55	502	Refer to emission calculation tables	-	,	3.06E-03	0.01	3.06E-03	0.01
		NOC		134.77	590.28	6.74	29.51	6.74	24.51
		Acetaldehyde		1.52	6.68	0.08	0.33	80.0	0.28
		Acrolein		2.26	9.91	0.11	0.50	0.11	0.41
		Formaldehyde		5.77	25.27	0.29	1.27	0.29	1.05
		Phenol		1.14	5.01	90.0	0.25	90.0	0.21
		00			,	4.84	21.22	4.84	17.62
		×ON		,	•	0.82	3.58	0.82	2.97
		PM		428.57	1,877	4.36	19.11	4.36	19.11
P4/E32, E33,		PM ₁₀		111.86	489.93	1.20	5.24	1.20	5.24
E34, E35, E36,		PM _{2.5}		69.13	251.46	69:0	2.51	69:0	2.51
E37, E38, E39,	98	502	Refer to emission calculation tables	-	-	6.12E-03	0.03	6.12E-03	0.03
E49, E50, E51,		NOC		134.77	590.28	6.74	29.51	6.74	24.51
E52		Acetaldehyde		1.52	6.68	0.08	0.33	0.08	0.28
		Acrolein		2.26	9.91	0.11	0.50	0.11	0.41
		Formaldehyde		5.77	25.27	0.29	1.27	0.29	1.05
		Phenol		1.14	5.01	90.0	0.25	90.0	0.21
		PM		17.14	75.09	0.17	0.75	0.17	0.75
P5/E40, E41	57	PM ₁₀	Refer to emission calculation tables	17.14	75.09	0.17	0.75	0.17	0.75
		PM _{2.5}		17.14	75.09	0.17	0.75	0.17	0.75
		PM		98.57	431.74	66:0	4.32	0.99	4.32
P5/E42	88	PM ₁₀	Refer to emission calculation tables	98.57	431.74	0.99	4.32	0.99	4.32
		PM _{2.5}		98.57	431.74	0.99	4.32	0.99	4.32
		PM		28.29	123.89	0.28	1.24	0.28	1.24
P5/E43	68	PM ₁₀	Refer to emission calculation tables	28.29	123.89	0.28	1.24	0.28	1.24
		PM _{2.5}		28.29	123.89	0.28	1.24	0.28	1.24

Bureau Construction Permit Application Emissions


		Pot	Potential Emission Rates at Maximum Design Capacity	city					
Equipment ID		4.11-6	Calculation Methods / Limits Taken / Other	Uncontrolled	rolled	Controlled	olled	Limited	ted
/ Process ID	Emission Point ID	Pollutants	Comments	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
		93		0.76	0.19	0.76	0.19	0.76	0.19
		NOX		10.95	2.74	10.95	2.74	10.95	2.74
		bM		0.03	8.58E-03	0.03	8.58E-03	0.03	8.58E-03
		PM ₁₀		0.03	8.58E-03	0.03	8.58E-03	0.03	8.58E-03
		PM _{2.5}		0.03	8.58E-03	0.03	8.58E-03	0.03	8.58E-03
P6/E44	513	502	Refer to emission calculation tables	9.41E-03	2.35E-03	9.41E-03	2.35E-03	9.41E-03	2.35E-03
		VOC		0.02	4.77E-03	0.02	4.77E-03	0.02	4.77E-03
		Acetaldehyde		4.64E-03	1.16E-03	4.64E-03	1.16E-03	4.64E-03	1.16E-03
		Benzene		5.65E-03	1.41E-03	5.65E-03	1.41E-03	5.65E-03	1.41E-03
		Formaldehyde		7.14E-03	1.79E-03	7.14E-03	1.79E-03	7.14E-03	1.79E-03
		Toluene		2.48E-03	6.19E-04	2.48E-03	6.19E-04	2.48E-03	6.19E-04
	:	00		1.75	0.44	1.75	0.44	1.75	0.44
		XON		20.2	0.50	2.02	0.50	2.02	0.50
		PM		0.10	0.03	0.10	0.03	0.10	0.03
		PM ₁₀		0.10	0.03	0.10	0.03	0.10	0.03
		PM _{2.5}		0.10	0.03	0.10	0.03	0.10	0.03
P6/E45	514	502	Refer to emission calculation tables	3.32E-03	8.30E-04	3.32E-03	8.30E-04	3.32E-03	8.30E-04
		NOC		5.36E-03	1.34E-03	5.36E-03	1.34E-03	5.36E-03	1.34E-03
		Acetaldehyde		1.64E-03	4.09E-04	1.64E-03	4.09E-04	1.64E-03	4.09E-04
		Benzene		1.99E-03	4.98E-04	1.99E-03	4.98E-04	1.99E-03	4.98E-04
		Formaldehyde		2.52E-03	6.30E-04	2.52E-03	6.30E-04	2.52E-03	6.30E-04
		Toluene		8.73E-04	2.18E-04	8.73E-04	2.18E-04	8.73E-04	2.18E-04
P6/E53	E53	VOC	Refer to emission calculation tables	1.98E-04	8.65E-04	1.98E-04	8.65E-04	1.98E-04	8.65E-04
P6/E54	E54	VOC	Refer to emission calculation tables	3.32E-05	1.45E-04	3.32E-05	1.45E-04	3.32E-05	1.45E-04
P6/E55	E55	VOC	Refer to emission calculation tables	6.58E-05	2.88E-04	6.58E-05	2.88E-04	6.58E-05	2.88E-04
		PM		63.03	276.09	6.30	27.61	6.30	27.61
P7/E56	05	PM ₁₀	Refer to emission calculation tables	17.97	78.70	1.80	7.87	1.80	7.87
		PM _{2.5}		1.80	7.87	0.18	0.79	0.18	0.79
i :		PM		4.98	21.79	0.50	2.18	0.50	2.18
P7/E57	80	PM ₁₀	Refer to emission calculation tables	1.00	4.36	0.10	0.44	0.10	0.44
		PM _{2.5}		0.24	1.07	0.02	0.11	0.02	0.11

Bureau of Air Quality Construction Permit Application Regulatory Review Page 1 of 6

Facility Name (This should be the name used to identify the facility) Enviva Pellets Greenwood, LLC Facility Name (Leave blank if one has never been assigned) February 2020 (rev. June 2020)	APPLICATION IDENTIFICATION (Please ensure that the information list in this table is the same on all of the forms and required information submitted in this construction permit application package.)	n submitted in this construction permit application	packade.)
1240- 0133	Facility Name (This should be the name used to identify the facility)	SC Air Permit Number (8-digits only) (Leave blank if one has never been assigned)	Application Date
	Enviva Pellets Greenwood, LLC	1240- 0133	February 2020 (rev. June 2020)

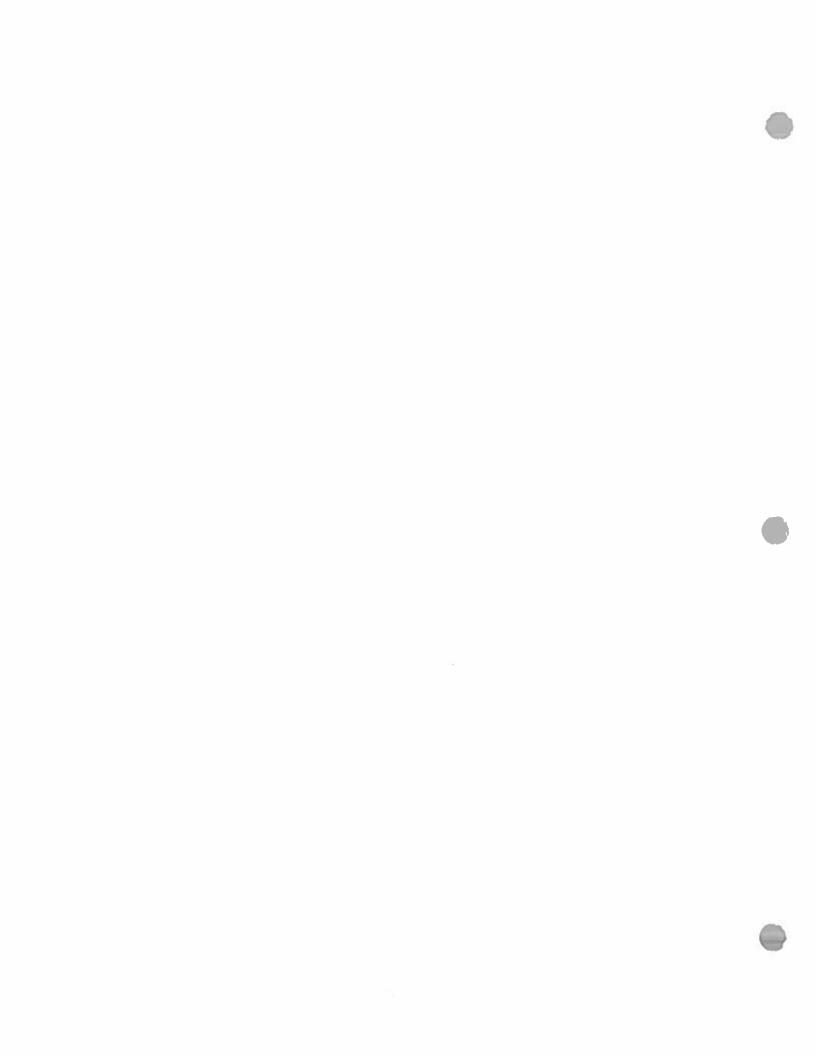


Bureau of Air Quality Construction Permit Application Regulatory Review Page 2 of 6

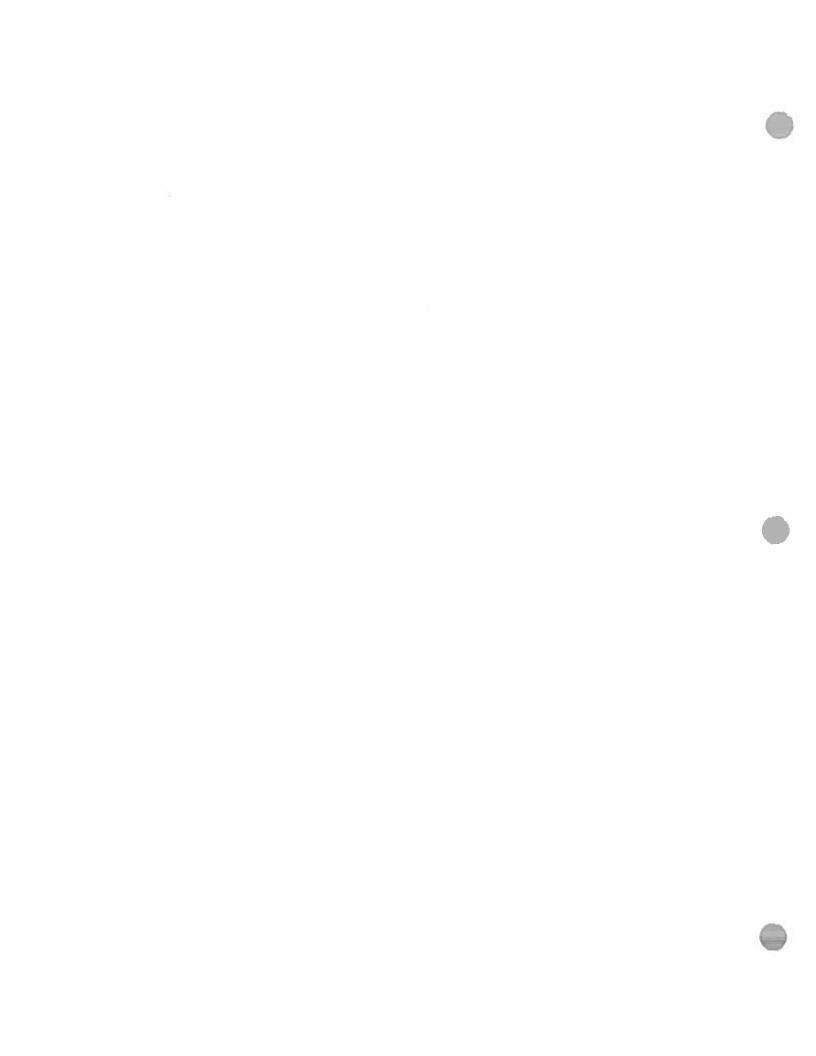
STAT	re and F	EDERA	STATE AND FEDERAL AIR POLLUTION CONTROL REGULATIONS AND STANDARDS	LATIONS AND STANDARDS	
	Applicable			Include all limits, work practices, monitoring, record keeping, etc.	ord keeping, etc.
Regulation	Yes	8	Explain Applicability Determination	List the specific limitations and/or requirements that apply.	How will compliance be demonstrated?
Regulation 61-62.5, Standard No. 2 Ambient Air Quality Standards	×		Standard No. 2 is generally applicable to sources in South Carolina emitting criteria pollutants. Standard No. 2 Modeling is addressed in Section 6 and Appendix E of this application.	State Ambient Air Quality Standards (SAAQS)	Enviva has performed air dispersion modeling to demonstrate compliance with the SAAQS. Results are addressed in Section 6 and Appendix E of this application.
Regulation 61-62.5, Standard No. 3 Waste Combustion and Reduction	×		Thermal oxidizers are considered industrial incinerators under this regulation	20% opacity and 0.5 lb/MMBtu total heat input	Weekly visual inspections
Regulation 61-62.5, Standard No. 4 Emissions from Process Industries			This rule is generally applicable to process sources in South Carolina.	Process Weight Rate Equation for PM (refer to Table 23 of Appendix C); 20% opacity	Use of the facility's PM control devices, weekly visual inspections, and proper operating practices for uncontrolled sources.
Regulation 61-62.5, Standard No. 5 Volatile Organic Compounds		\boxtimes	Diesel storage tanks have capacities less than 40,000 gallons and facility does not have any other operations listed under Part II of this regulation	Not Applicable	Not Applicable
Regulation 61-62.5, Standard No. 5.2 Control of Oxides of Nitrogen			This rule is applicable to combustion sources rated at 10 MMBtu/hr or greater. The 200 MMBtu/hr furnace (E11) is subject to this rule.	Standard 5.2, Section III limitations.	Furnace design providing 30% emissions reduction relative to uncontrolled levels and tuneups on the furnace every 24 months.

DHEC 2570 (9/2014)

Bureau of Air Quality Construction Permit Application Regulatory Review Page 3 of 6

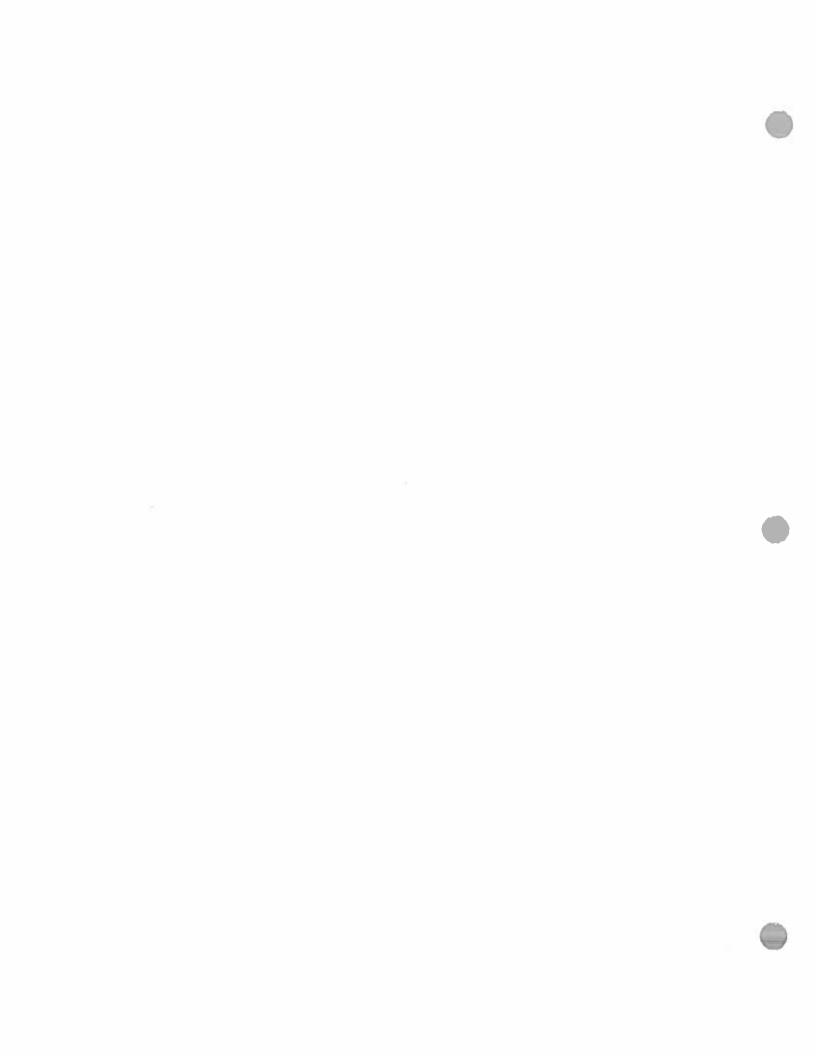

STATE	EAND	FEDERAL	STATE AND FEDERAL AIR POLLUTION CONTROL REGULATIONS AND STANDARDS (If not listed below add any additional regulations that are triggered.)	JLATIONS AND STANDARDS hat are triggered.	
	Applicable	cable	Include all limits,	Include all limits, work practices, monitoring, record keeping, etc.	ord keeping, etc.
	Yes	2	Explain Applicability Determination	List the specific limitations and/or requirements that apply.	How will compliance be demonstrated?
Regulation 61-62.5, Standard No. 7 Prevention of Significant Deterioration		\boxtimes	The facility is not a PSD major source and proposed modification does not increase emissions above PSD major source levels.	Not Applicable	Not Applicable
Regulation 61-62.5, Standard No. 7.1 Nonattainment New Source Review		\boxtimes	The facility is located in Greenwood County, which is designated as attainment or unclassifiable for all NAAQS.	Not Applicable	Not Applicable
Regulation 61-62.5, Standard No. 8 Toxic Air Pollutants			Standard No. 8 is generally applicable to sources in South Carolina emitting TAPs. Standard No. 8 Modeling is addressed in Section 6 and Appendix E of this application.	Maximum Allowable Ambient Concentrations (MAAC)	Enviva has performed air dispersion modeling to demonstrate compliance with the MAAC for TAPs with potential emissions exceeding their de minimis values. Results are addressed in Section 6 and Appendix E of this application.
Regulation 61-62.6 Control of Fugitive Particulate Matter	\boxtimes		The facility includes sources of fugitive PM emissions subject to this regulation.	Control fugitive PM emissions so that it does not create an undesirable level of air pollution.	Proper operating practices for fugitive sources at the facility.
Regulation 61-62.68 Chemical Accident Prevention Provisions			The facility does not store any regulated toxic substances.	Not Applicable	Not Applicable

Bureau of Air Quality Construction Permit Application Regulatory Review Page 4 of 6


STATI	E AND I	FEDERAL	STATE AND FEDERAL AIR POLLUTION CONTROL REGULATIONS AND STANDARDS (If not listed below add any additional regulations that are triggered.)	ULATIONS AND STANDARDS hat are triggered.)	
	Applicable		Include all limits,	Include all limits, work practices, monitoring, record keeping, etc.	ord keeping, etc.
Regulation	Yes	2	Explain Applicability Determination	List the specific limitations and/or requirements that apply.	How will compliance be demonstrated?
Regulation 61-62.70 Title V Operating Permit Program	\boxtimes		The facility is a major source with respect to the Title V Operating Permit Program because facility-wide emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy.	Submit Title V Operating Permit application.	Submittal of Title V Operating Permit application
40 CFR Part 64 - Compliance Assurance Monitoring (CAM)	×		CAM applies to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit and whose pre-controlled emissions exceed the major source thresholds.	For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V renewal application.	cAM will potentially be applicable to sources at the facility. However, no emission units have post-controlled emissions above major source thresholds and, therefore, any CAM plans that may be required will not be due until submittal of the initial Title V renewal. Applicability of 40 CFR 64 requirements will be fully assessed at that time.
40 CFR 60 Subpart A - General Provisions	\boxtimes		The facility is subject to subparts under Part 60.	General Provisions	General Provisions
40 CFR 60 Subpart Db –Industrial- Commercial-Institutional Steam Generating Units			The facility does not include any steam generating units.	Not Applicable	Not Applicable

Bureau of Air Quality Construction Permit Application Regulatory Review Page 5 of 6

STATI	E AND F	EDERAI	STATE AND FEDERAL AIR POLLUTION CONTROL REGULATIONS AND STANDARDS (If not listed below add any additional regulations that are triggered.)	JLATIONS AND STANDARDS hat are triggered.)	
	Applicable		Include all limits,	Include all limits, work practices, monitoring, record keeping, etc.	ord keeping, etc.
Regulation	Yes	8	Explain Applicability Determination	List the specific limitations and/or requirements that apply.	How will compliance be demonstrated?
40 CFR 60 Subpart Dc – Small Industrial- Commercial-Institutional Steam Generating Units		\boxtimes	The facility does not include any steam generating units.	Not Applicable	Not Applicable
40 CFR 60 Subpart IIII – Stationary Compression Ignition Internal Combustion Engines	\boxtimes		This regulation is applicable to t pump engine. The engines wil	This regulation is applicable to the facility's existing diesel-fired emergency generator and fire pump engine. The engines will be unaffected by this proposed project, and the facility will compines.	emergency generator and fire I project, and the facility will or the engines.
40 CFR 60 Subpart Kb – Volatile Organic Liquid Storage Vessels		\boxtimes	The facility's storage tanks do not have maximum storage capacity greater than or equal to 39,890 gallons of a volatile organic liquid and therefore, the facility is not subject to Subpart Kb.	Not Applicable	Not Applicable
40 CFR 61 Subpart A - General Provisions		\boxtimes	Subpart A applies if a source is subject to another 40 CFR Part 61 Subpart. The facility is not subject to any Part 61 NESHAPs.	Not Applicable	Not Applicable
40 CFR 63 Subpart A - General Provisions	\boxtimes		Subpart A applies if a source is subject to another 40 CFR Part 63 Subpart. The facility does include sources subject to Part 63 NESHAPs.	General Provisions	General Provisions

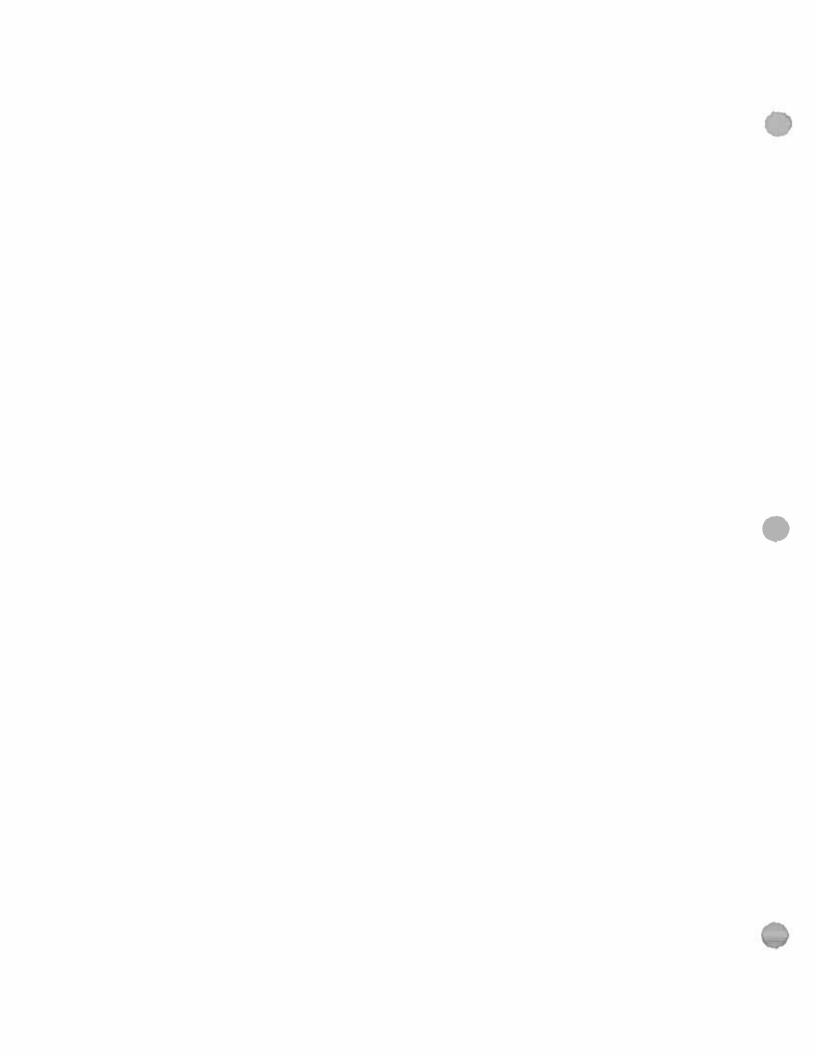


Bureau of Air Quality Construction Permit Application Regulatory Review Page 6 of 6

STAT	E AND F	EDERA	STATE AND FEDERAL AIR POLLUTION CONTROL REGULATIONS AND STANDARDS (If not listed below add any additional regulations that are triggered.)	JLATIONS AND STANDARDS hat are triggered.)	
	Applicable	able	Include all limits,	Include all limits, work practices, monitoring, record keeping, etc.	ord keeping, etc.
Regulation	Yes	No	Explain Applicability Determination	List the specific limitations and/or requirements that apply.	How will compliance be demonstrated?
40 CFR 63 Subpart B - Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)		\boxtimes	The Greenwood plant will not be subject to 112(g) since it is currently, and will remain, an area source of HAP emissions.	Not Applicable	Not Applicable
40 CFR 63 Subpart DDDD – Plywood and Composite Wood Products			The facility is not a major source of HAP emissions and, further, the wood pellets manufactured at the facility do not meet the definition for any of the PCWP products under \$63.2292 that are subject to Subpart DDDD.	Not Applicable	Not Applicable
40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Combustion Engines (RICE)			This regulation is applicable to to pump engine. The engines will continue to comp	This regulation is applicable to the facility's existing diesel-fired emergency generator and fire pump engine. The engines will be unaffected by this proposed project, and the facility will continue to comply with Subpart ZZZZ standards for the engines.	emergency generator and fire if project, and the facility will for the engines.
40 CFR 63 Subpart DDDDD – Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters			The facility is not a major source of HAP emissions.	Not Applicable	Not Applicable
40 CFR 63 Subpart JJJJJ – Area Sources: Industrial, Commercial, and Institutional Boilers			The facility does not currently operate any units that meet the Subpart JJJJJ definition of a boiler and Enviva is not proposing to add boilers to the facility as part of the proposed project.	Not Applicable	Not Applicable

^{*} Green House Gas emissions must be quantified if these regulations are triggered.

Bureau of Air Quality Construction Permit Application Application Revision Request Page 1 of 2


Date Constructi	- Di4	Revision	Request
tion Permit ID Issued	on Permit	Date	request
January 12, 2018	3		
	Issued	January 12, 2018	January 12, 2018 February (rev. June

			ICATION FORMS BEING REV	
Form #	Date of Original Submittal		Brief Description of F	
D-2566	December 2017	Updated contac	t information	
D-2567	December 2017	New proposed	sources were added.	
D-2569	December 2017	The facility upon application.	dated facility-wide emission	ns calculations as part of this
D-2570	December 2017	The facility revi application.	iewed facility-wide regulato	ry applicability as part of this
D-2573	December 2017	The facility pe application.	rformed an updated mode	eling analysis as part of this
		OWNER O	R OPERATOR	
Title/Position:	Plant Manager	Salutation: Mr.	First Name: Croft	Last Name: Hollingsworth
Mailing Addres	ss: 200 Enviva Way	•		
City: Greenwo	od		State: SC	Zip Code: 29646
E-mail Address	: croft.hollingsworth@e	nvivabiomass.com	Phone No.: 864-414-9020	Cell No.:
		OWNER OR OPE	RATOR SIGNATURE	

I certify, to the best of my knowledge and belief, that no applicable standards and/or regulations will be contravened or violated. I certify that any application form, report, or compliance certification submitted in this permit application is true, accurate, and complete based on information and belief formed after reasonable inquiry. I understand that any statements and/or descriptions, which are found to be incorrect, may result in the immediate revocation of any permit issued for this application.

Signature of Owner or Operator

		CONSULTANT as the Professional Engineer)	
Consulting Firm Name: Ramboll US Co			
jitle/Position: Managing Principal	Salutation: Mr.	First Name: Michael	Last Name: Carbon

Bureau of Air Quality Construction Permit Application Application Revision Request Page 2 of 2

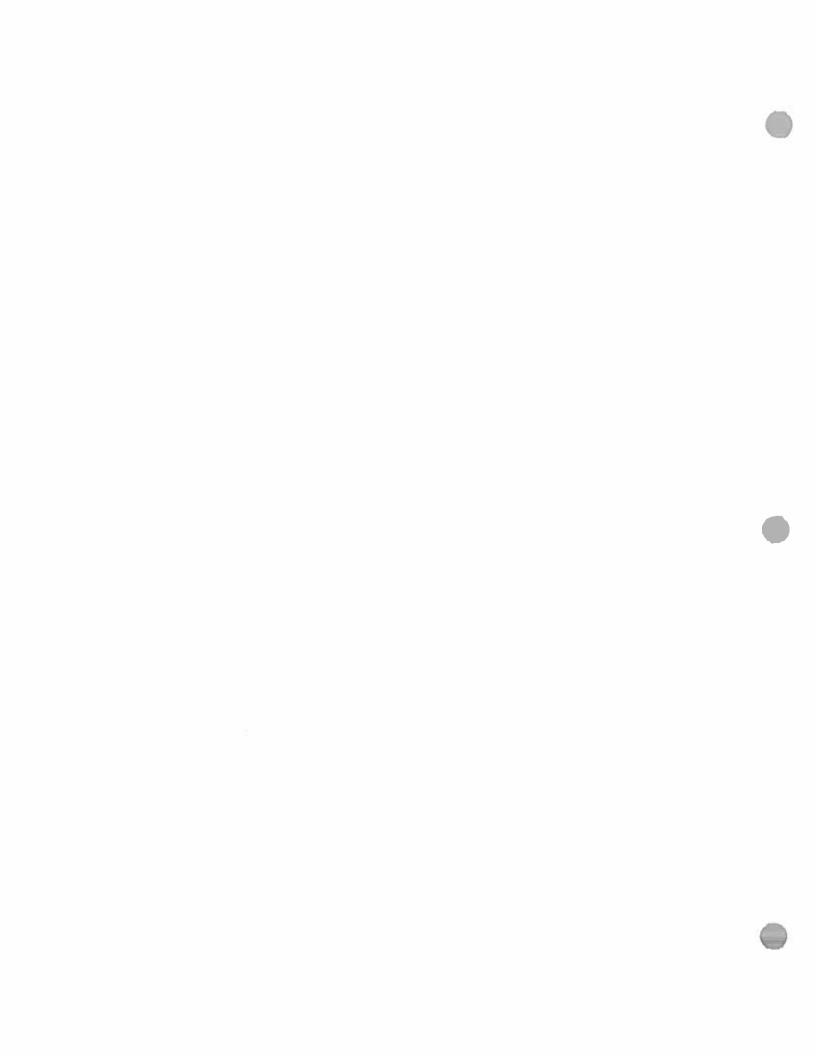
Mailing Address: 8235 YMCA Plaza C City: Baton Rouge		State: LA	Zip Code: 70810
E-mail Address: mcarbon@ramboll.c	om	Phone No.: 225-408-2691	Cell No.:
		GINEER INFORMATION	
Consulting Firm Name: Ramboll US C	orporation		
Title/Position: South Region COO	Salutation: Mr.	First Name: Russell	Last Name: Kemp
Mailing Address: 1600 Parkwood Cir	cle, Suite 310		
City: Atlanta		State: GA	Zip Code: 30339
E-mail Address: rkemp@ramboll.com	n	Phone No.: 678-388-1654	Cell No.:
SC License/Registration No.: 15807			
	PROFESSIONAL E	NGINEER SIGNATURE	

I have placed my signature and seal on the engineering documents submitted, signifying that I have reviewed this construction permit application as it pertains to South Carolina Regulation 61-62, Air Pollution Control Regulations and Standards.

Signature of Professional Engineer

Bureau Tr Quality Emission Point Identification Page 1 of 4

	A. Applicat	A. Application Identification
1. Facility Name: Enviva Pellets Greenwood, LLC		
2. SC Air Permit Number (if known; 8-digits only):	1240-0133	3. Application Date February 2020
4. Project Description: Enviva is requesting planned ch	langes for the Greenwoo	I changes for the Greenwood plant to increase pellet production rate and reduce emissions from the DHMs, as
well as other changes described in detail in the permit application report	t application report	

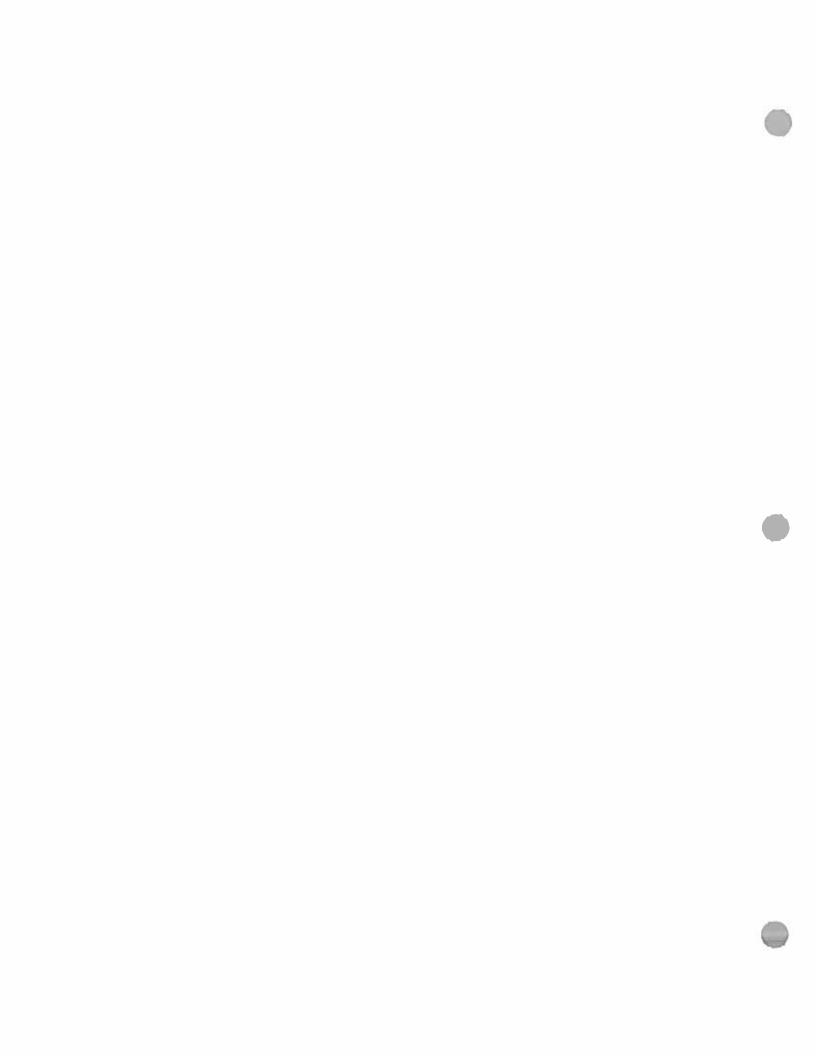

	B. Facil	B. Facility Information
1. Is your company a Small Business?		2. If a Small Business or small government facility, is Bureau assistance being requested? ☐ Yes ☑ No
3. Are other facilities collocated for air compliance?	☐ Yes 🗾 No	Tyes J No 4. If Yes, provide permit numbers of collocated facilities: Not Applicable

			C. Air Contact	itact	
Consulting Firm A	Consulting Firm Name (if applicable): Ramboll US Co	mboll US Corporation			
Title/Position:	Managing Principal Salutat	Salutation: Mr.	First Name: Michael	Michael	Last Name: Carbon
Mailing Address:	Mailing Address: 8235 YMCA Plaza Drive, Suite 300	Suite 300			
City:	Baton Rouge		State: LA		Zip Code: 70810
E-mail Address:	E-mail Address: mcarbon@ramboll.com		Phone No:	Phone No: 225-408-2691	Cell No:

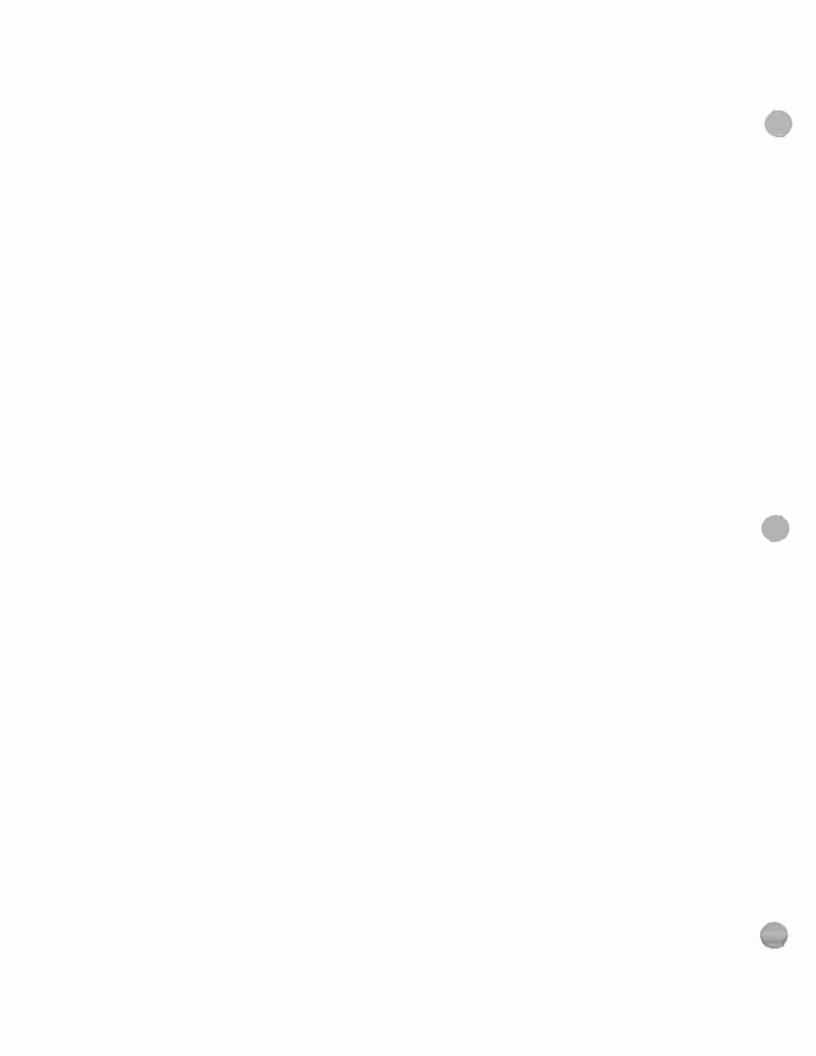
D. Emission Point Dispersion Parameters

Bureau of Air Quality for clarification of data requirements. Include sources on a scaled site map. Also, a picture of area or volume sources would be helpful but is Source data requirements are based on the appropriate source classification. Each emission point is classified as a point, area, volume, or flare source. Contact the not required. A user generated document or spreadsheet may be substituted in lieu of this form provided all of the required emission point parameters are submitted in the same order, units, etc. as presented in these tables.

Abbreviations / Units of Measure: UTM = Universal Transverse Mercator; N= Degrees North; W = Degrees West; m = meters; AGL = Above Ground Level; ft = feet; ft/s = feet per second; 0 = Degrees; 0F = Degrees Fahrenheit

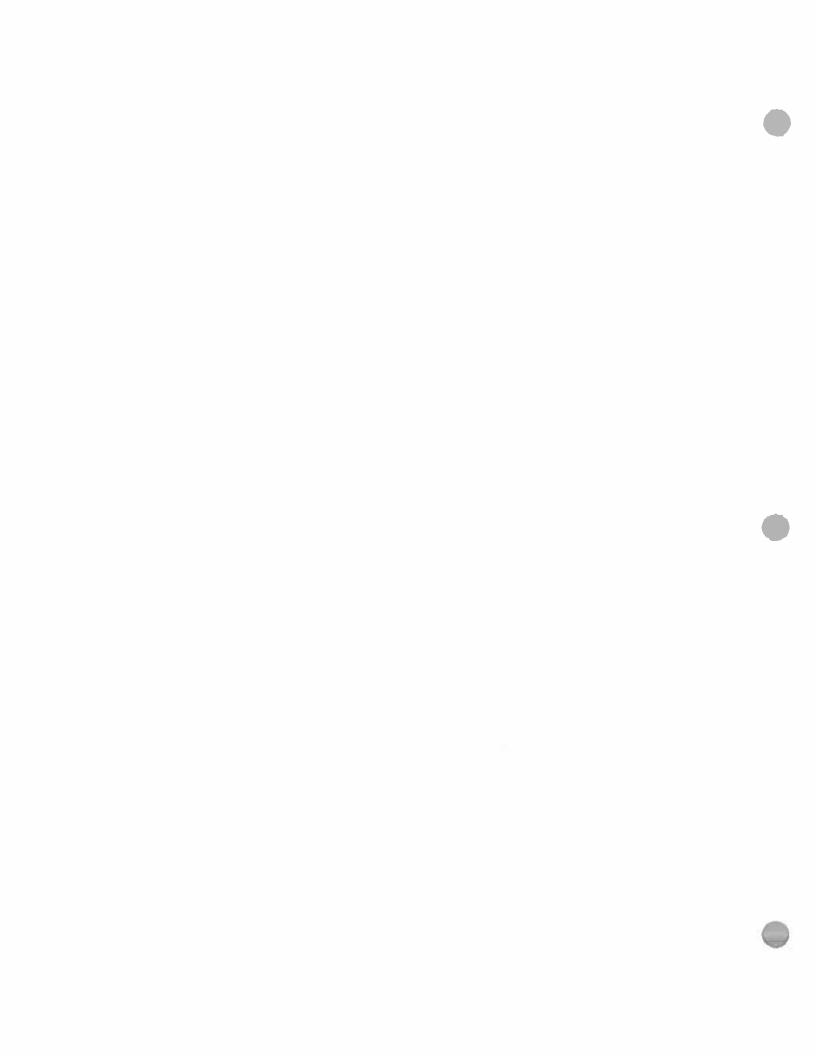


			.	oint sources suc	E. Point Source Data (Point sources such as stacks, chimneys, exhaust fans, and vents.)	rce Data incys, exha	ust fans, and	vents.)							
Emission Point	Description / Name	Po	Point Source Coor	ce Coordinates (NAD 83)	3	Release Height	Temp. (*F)	Exit Velocity	Inside	Discharge Orientatio	Rain Cap?	Distance to Nearest		Building	
≘		UTM E (m)	UTM N (m)	Lat (*N)	Long ("W)	AGL (ft)		(ft/s)	(ft)	e e		Property Boundary (ft)	Height (ft)	(ft) (ft) (ft)	(ft)
RTO1	Green Hammermill 1-5, Green Chip Silo, Dryer, Furnace, DHMs	401,937.00	3,788,078.00	34.229162	-82.064732	75.46	252.00	58.060	8.333	Vertical	z	~ 150	25.00	90.09	40.00
FBYP1_I	Furnace Bypass Stack "Idle Mode"	401,883.00	3,788,057.00	34.228967	-82.065316	79.75	550.00	2.286	6.000	Vertical	z	~165	53.00	100.00	30.00
FBYP1_F	Furnace Bypass Stack Cold Start- up	401,883.00	3,788,057.00	34.228967	-82.065316	27.67	450.00	6.180	6.000	Vertical	z	~165	53.00	100.00	30.00
SOO	Dry Chip Silo	401,922.17	3,788,115.91	34.229502	-82.064898	84.97	Ambient	43.810	0.984	Horizontal	Z	~150	84.00	9.14	1
PFS	Pelletizer Feed Silo	402,010.00	3,788,191.00	34.230187	-82.063953	84.97	Ambient	43.810	0.984	Horizontal	Z	-155	84.00	9.14	1
RT02	Pellet Cooler 1-3; Pelletizer 1-9	401,976.00	3,788,211.00	34.230365	-82.064324	112.53	260.33	52.519	4,495	Vertical	z	~120	82.00	200.00	85.00
RT03	Pellet Cooler 4-6; Pelletizer 10- 18	401,992.00	3,788,227.00	34.230510	-82.064152 112.53	112.53	260.33	52.519	4.495	Vertical	z	~115	82.00	200.00	85.00

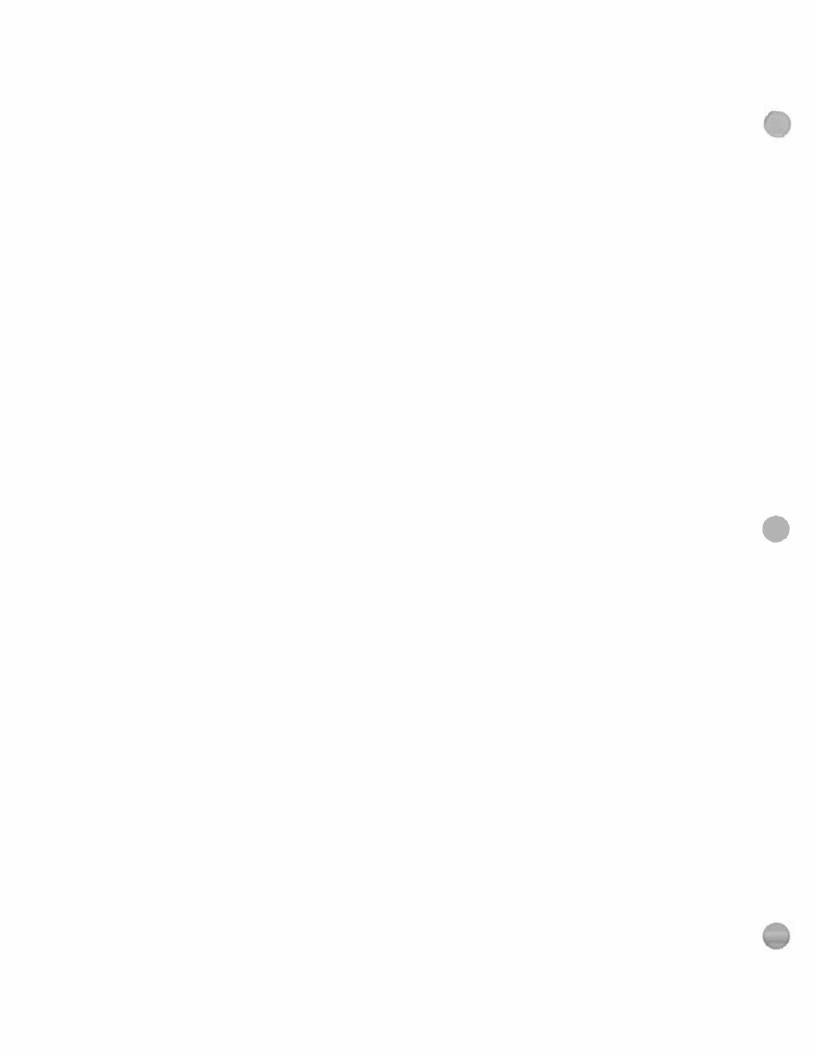

G. Volume sources such as building fugitives that have initial dispersion vertical depth prior to release.)	Release Height AGL Initial Horizontal Initial Vertical Distanc		401,639.00 3,787,901.00 34,227540 -82.067950 6.48 3.17 12.05 ~340			
ource Data re initial dispersion vertical depth prior to release)	Initial Horizontal Dimension (ft)		3.17			
	Release Height AGL (ft)		6.48			
G. Volume So		Long (*W)	-82.067950			
(Volume sources such as building	Volume Source Coordinates Projection:		34.227540			
		UTM N (m)	3,787,901.00			
		UTM E (m)	401,639.00			
	Description / Name		Electric-Powered Chipping	·		
	Emission Point ID		CHIP			

			(Point sc	nurces where the	H. Flare Source Data he combustion takes place	H. Flare Source Data (Point sources where the combustion takes place at the tin of the stack.)	of the stack.)					
Emission Point 1D	Description / Name	Flan	Source Cox	Flare Source Coordinates (NAD 83)	ND 83)	Refease Height AGL (ft)	Heat Release Rate (BTU/hr)	Distance to Nearest Property Boundary (ft)		Height	Building Length W	Widt
		UTM E (m)	UTM E (m) UTM N (m)	('N')	Long (*W)	cable				3	£	H H
									r	r	r	Γ
									\parallel		\parallel	\prod
									1	1	+	T
										П	\dagger	
					Area Clondar Source Data	Source Data		:				
micelan Bolut		Area Clay	ular Courses	Coordinates	- Designation					Dietary	Distance to Nearest	1
Emission Point ID	Description / Name	Area Circ	Area Circular source C	Area Circular Source Coordinates Projection:	Projection:	Release H	Release Height AGL (ft)	Radius Area (ft)		Property	Distance to nearest Property Boundary (ft)	る
		Jan. 2 1111		4	Not Applicable	icable			1			
									Г			
									П			
									T			
									П			
					Area Bahi Courte Date	etel amin						
	_				200000000000000000000000000000000000000	Pine Sales						
Emission Point	Description / Name	Area Po	oly Source C	Area Poly Source Coordinates Projection:			Release Height AGL (ft)	Nur	nberof	Number of Vertices		
•	_	UTM E (m)	UTM N (m)	UTM E (m) UTM N (m) Lat (*N)	ے							
					יייייייייייייייייייייייייייייייייייייי	E-BOILE						
					\downarrow							
				Ш								
					K. Open Pit Source Data	ource Data						
Emission Point	Description / Name	Open	olt Source C	Open Pit Source Coordinates Projection:	rojection:	Release Height	Easterly Length (ft)		Volume (ft ³)	3	Angle from	E
٥		UTM E (m)	UTM E (m) UTM N (m)	(Lat ("N)	Long ("W)	AGL (ft)		Length (ft)			North (*)	
					dd oo	2000						
										П		
										Γ		

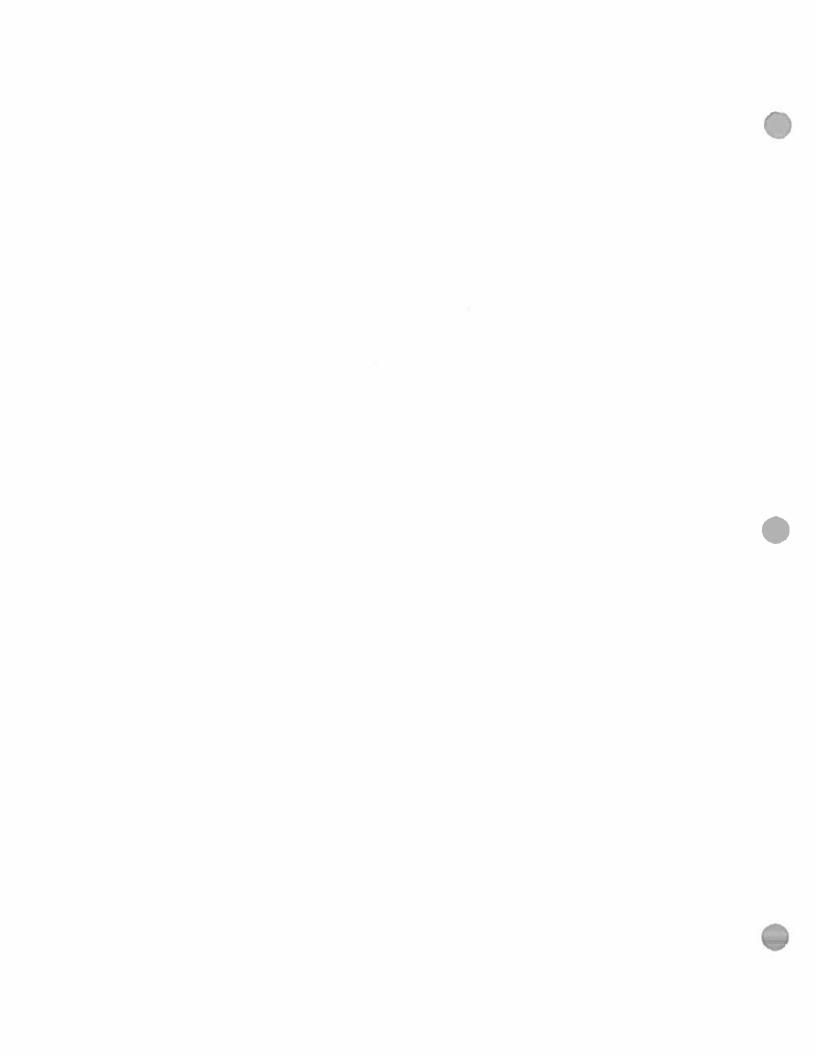
Controlled or Uncontrolled 8 8 8 8 8 8 8 8 S 2 2 No ş No No 2 2 2 2 2 2 Same as Permitted Yes Yes Yes Ves Yes Bureau Quality Emission Point Information Page 4 of 4 Emission Rate (lb/hr) L. Emission Rates Please see Appendix C for Potential Emissions Calculations CAS# **Pollutant Name** Emission Point ID [Model ID]

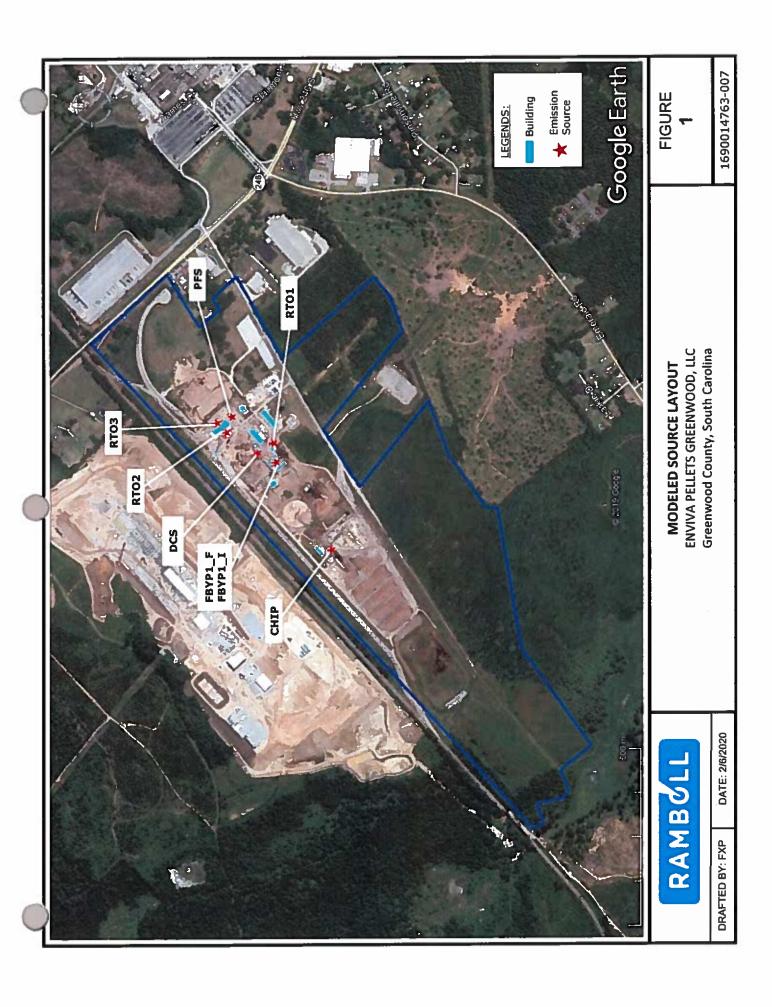

No

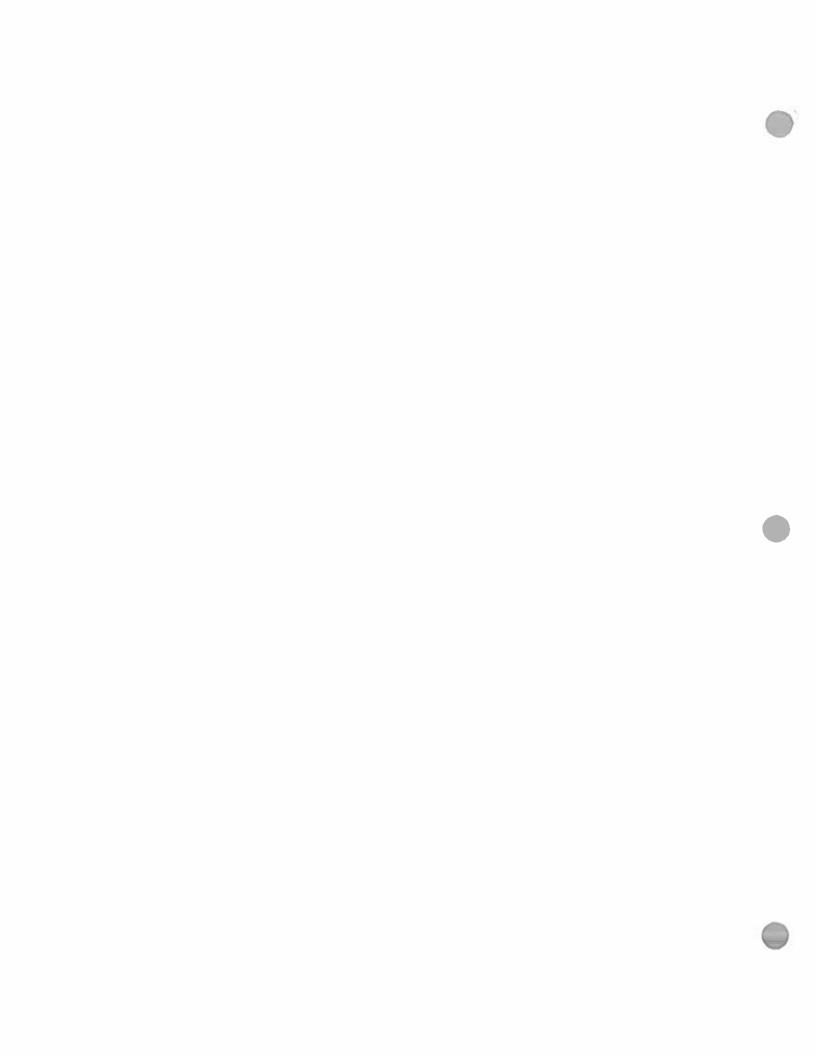
ş


å

S_N


Averaging Period


APPENDIX E
SUPPORTING DOCUMENTATION FOR MODELING ANALYSES



All AERMOD and BPIP input and output files were provided in a digital format (i.e., USB flash drive) as part of the February 2020 application. The meteorological data and NED file utilized in the modeling analyses were obtained from the SC DHEC website. Therefore, consistent with SC DHEC guidance, these were not included.

APPENDIX F
MODELED SOURCE LAYOUT

