Backflow Assembly Field Test Procedures # Using Three-Valve & Five-Valve Test Kits Bureau of Water South Carolina Department of Health and Environmental Control # 5-Valve Test Procedure for a Reduced Pressure Principal Backflow Preventer (RP)(Pres. Differential test) | the # 2 | |--| | | | VALVE (5psid>) | | he By-Pass Reading to Rise, Reading is 5 PSID Valve as tight. | | IT(2psid>) | | ne Relief
Water on Your
e(2psid>) | | CK (1psid>) | | nd place it on TC # 4
nd Place it on TC # 3
sir, Then Close
Air, Then Close | | | | and Drain
Dening # 2 Shut | | | ### **Detector Assemblies:** **RPDA Type I:** 1) Test main assembly as normal using approved RP procedures. Remember to isolate the bypass before testing main assembly. 2) Then test bypass assembly separately using approved RP procedures. **RPDA Type II:** 1) Test mainline RP as normal using approved RP procedures. Remember to isolate bypass before testing main assembly. 2) Test bypass single check valve using normal approved check #2 test procedures. # 5-Valve Test Procedure / Double Check Valve Assembly (Pressure Differential test) | PREPARING TO TEST THE ASSEMBLY | Test #1 TIGHTNESS OF # 2 SHUT OF VALVE | |---|---| | □ 1. Notify the customer □ 2. Inspect the area for safety □ 3. Determine if the assembly is Approved & Appropriate □ 4. Record Make, Model #, Serial # and Static Working
Pressure on test report form | □ 1. Turn Off Shut Off Valve # 2 □ 2. Open TC # 4 □ 3. Close TC # 2 – Pause to Allow Gauge to Readjust □ 4. Read the Gauge & Record (Example: Tight) *If the Pressure Differential Gauge Remains Steady, Record the #2 Shut Off Valve as Tight. | | FLUSHING OF TEST COCKS | Test #2 TIGHTNESS OF #1 CHECK | | □ 1. Place Test Adapters on Test Cocks (TC) 2, 3, and 4 □ 2. Open TC # 1, Bleed, then Close □ 3. Open TC # 2, Bleed, then Close □ 4. Open TC # 3, Bleed, then Close □ 5. Open TC # 4, Bleed, then Close □ 6. Make sure all 5 valves on Gauge are closed | □ 1. Close TC # 4 □ 2. Close High Valve □ 3. Remove By-Pass Hose from TC #4 □ 4. Open TC # 2 □ 5. S-L-O-W-L-Y Open Low Side Bleed Valve to Cause Differential Reading to Rise – Then Close □ 6. Read the Gauge & Record Value The Pressure Differential Gauge Reading should be 1 PSID or Above. | | ATTACHING THE TEST KIT | Test #3 TIGHTNESS OF # 2 CHECK | | □ 1. Attach High Side Hose to TC # 2 □ 2. Attach Low Side Hose to TC # 3 □ 3. Open TC # 2 □ 4. Open TC # 3 □ 5. Open High Side Bleed Valve, Bleed Air, Then Close □ 6. Open Low Side Bleed Valve, Bleed Air, Then Close □ 7. Attach By-Pass Hose to TC # 4 □ 8. Open High Side Valve (1/4 Turn) □ 9. Open By-Pass Valve □ 10. Loosen By-Pass Hose at TC # 4 to Bleed Air, Then Tighten □ 11. S-L-O-W-L-Y Open Low Side Bleed Valve to Cause Differential Reading to Rise — Then Close | □ 1. Close TC # 2 □ 2. Close TC # 3 □ 3. Remove Low Side Hose from TC # 3 and place it on TC # 4 □ 4. Remove High Side Hose from TC # 2 and Place it on TC # 3 □ 5. Open TC # 3 □ 6. Open High Side Bleed Valve – Bleed Air, Then Close □ 7. Open TC # 4 □ 8. Open Low Side Bleed Valve – Bleed Air, Then Close □ 9. Read the Gauge & Record Value | | | RESTORE SYSTEM | | | 1. Close All Test Cocks 2. Remove Hoses 3. Open All Valves on the Test Kit and Drain Water 4. Restore Water to building by Opening # 2 Shut Off Valve on Assembly | <u>Detector Assemblies</u>: To verify flow through the bypass, open test cock #4 and the meter should move. **DCDA Type I:** 1) Test main assembly as normal using approved DCVA procedures. Remember to isolate the bypass before testing main assembly. 2) Then test bypass assembly separately using approved DCVA procedures. **DCDA Type II:** 1) Test mainline DCVA as normal using approved DCVA procedures, Remember to isolate bypass before testing main assembly. 2) Test bypass single check valve using normal approved check #2 test procedures. # 5-Valve Test Procedure for a Double Check Valve Assembly (DCVA) (Direction of Flow test) | Check Valve #2 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | □ 1. Move vertical tube from TC #3 to TC #4* □ 2. Move high hose to TC #3 □ 3. Open high bleed valve □ 4. Open TC #3 slowly □ 5. close high bleed valve when air stops □ 6. Open TC #4 to fill vertical tube □ 7. Close TC #4 □ 8. Close shut-off valve #1 □ 9. Center gauge with top of vertical tube □ 10. Open TC #4 □ 11. Record status of check valve #2 (closed tight @ 1psid> or leaking) | | | | Final Close TC #3 & #4 Remove all hoses Open shut-off valve #1 Open shut-off valve slowly #2 | | | <u>Detector Assemblies:</u> To verify that there is flow through the bypass, open test cock #4 and meter should move. **DCDA Type I:** 1) Test main assembly as normal using approved DCVA procedures. Remember to isolate the bypass before testing main assembly. 2) Then test bypass assembly separately using approved DCVA procedures. **DCDA Type II:** 1) Test mainline DCVA as normal using approved DCVA procedures, Remember to isolate bypass before testing main assembly. 2) Test bypass single check valve using normal approved check #2 test procedures. # 5 - Valve Test Procedure Pressure Vacuum Breaker(PVB) (Direction of Flow) | PREPERATION | STEP # 2 - Check Valve Value | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | □ 1. Notify the customer □ 2. Inspect the area for safety □ 3. Determine if the assembly is Approved & Appropriate □ 4. Record Make, Model #, Serial # and Static Working Pressure on test report form □ 5. Close All Valves on Test Gauge □ 6. Remove Low Side Hose from Gauge (if on gauge) □ 7. Remove Canopy and Clean Debris Around Air Inlet □ 8. Flush TC#1 □ 9. Flush TC#2 □ 10. Turn Off The # 2 Shut off Valve □ 11. Open High Side Bleed Valve | □ 1. Attach High Side Hose to TC #1 □ 2. SLOWLY Open TC # 1 □ 3. Close High Side Bleed Valve □ 4. Turn Off The # 1 Shut off Valve □ 5. Center Gauge with PVB □ 6. SLOWLY Open TC # 2 and Record PSID Value When Water Stops Flowing from TC #2 □ 7. Close TC #2 & TC #1 □ 8. Remove Hose from TC#1 | | TEST # 1: Air Inlet Opening | Restore system by: | | □ 1. Attach high hose to TC #2 □ 2. SLOWLY - Open TC #2 □ 3. Close High Side Bleed Valve (when air stops) □ 4. Turn Off The # 1 Shut off Valve □ 5. Center Gauge with PVB □ 6. SLOWLY Open High Side Bleed Valve and Observe PSID Recording when Air Inlet Pops □ 7. Close TC # 2 □ 8. Turn on the # 1 Shut off Valve | □ 1. Open the # 1 Shut off Valve First □ 2. Open the # 2 Shut off Valve | ## 3-Valve Reduced Pressure Backflow Preventer (RPBP) (Pressure Differential) | PREPARING TO TEST THE ASSEMBLY | Test #2: BACKPRESSURE TEST FOR # 2 CHECK | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | □ 1. Notify the customer □ 2. Inspect the area for safety □ 3. Determine if the assembly is Approved & Appropriate □ 4. Record Make, Model #, Serial # & Assembly Type | 1. If gauge Remains Steady during Test #1 & No Water is Dripping from the Relief Valve, the # 2 Check Valve is Considered to be Tight. | | FLUSHING OF TEST COCKS | Test #3: CHECK VALVE #1 DIFFERENTIAL VALUE (5psid>) | | □ 1. Place Test Adapters on Test Cocks (If Applicable) □ 2. Open TC # 4 – Let flow □ 3. Open TC # 1, then close □ 4. Open TC # 2, then close □ 5. Open TC # 3, then close □ 6. Close TC # 4 □ 7. Make sure High & Low Valves on the Gauge are CLOSED!! □ Open Vent/Bypass Valve on gauge □ 8. Close Shutoff valve #2 | □ 1. Close TC#4 □ 2. Close High Control Valve □ 3. Remove Vent/Bypass hose from TC#4 □ 4. Open TC # 2 □ 5. Open Low Side Control Valve, to Cause Reading to Rise, Then Close (Basically a Reset) □ Read the Gauge and Record Value | | ATTACHING THE TEST KIT | Test #4: RELIEF VALVE OPENING VALUE | | □ 1. Attach High Side Hose to TC # 2 □ 2. Attach Low Side Hose to TC # 3 □ 3. Slowly open TC#3 □ 4. Open Low Side Control Valve (Leave Open) □ 5. Open TC #2 □ 6. Open High Side Control Valve, Bleed Air, Then Close □ 7. Close Low Side Control Valve □ 8. Close Vent/Bypass Valve on gauge | □ 1. Close Vent/Bypass Valve on gauge □ 2. Open High Control Valve □ 3. S-L-O-W-L-Y Open Low Valve □ 4. Place the Top of Your Hand Under the Relief (2psid>) □ 5. As Soon as You Feel the First Drop of Water on Your Hand. Read the Gauge and Record Value □ 6. Close High & Low Control Valves on the Gauge | | Test #1: TIGHTNESS OF # 2 SHUT OF VALVE | Test #5: TIGHTNESS OF # 2 CHECK (1psid>) (SC Unique) | | □ 1. Attach Vent/Bypass Hose to TC # 4 □ 2. Open High Side Control Valve □ 3. Open Vent/Bypass Valve on gauge □ 4. Loosen Vent/Bypass Hose at TC # 4 to Bleed Air, Then Tighten □ 5. Open TC # 4 □ 6. Close TC # 2 - Pause to Allow Gauge to Readjust □ 7. Read the Gauge & Record (ex: Closed Tight) ○ If the Pressure Differential Gauge Remains Steady, Record the #2 Shut Off Valve as Tight. | □ 1. Close TC # 2 □ 2. Close TC # 3 □ 3. Remove Low Side Hose from TC # 3 and place it on TC # 4 □ 4. Remove High Side Hose from TC # 2 and Place it on TC # 3 □ 5. Open TC # 3 □ 6. Open Vent/Bypass Valve on gauge □ 7. Open High Side Control Valve – Bleed Air, Then Close □ 8. Open TC # 4 □ 9. Open Low Side Control Valve – Bleed Air, Then Close □ 10. Close Vent/Bypass Valve on gauge □ 11. Read the Gauge & Record Value | | | RESTORE SYSTEM | | | □ 1. Close All Test Cocks □ 2. Remove Hoses □ 3. Open All Valves on the Test Kit and Drain Water □ 4. Restore Water by Opening # 2 Shut Off Valve | <u>Detector Assemblies:</u> To verify flow through the bypass, open test cock #4 and the meter should move. **RPDA Type I:** 1) Test main assembly as normal using approved RP procedures. Remember to isolate the bypass before testing main assembly. 2) Then test bypass assembly separately using approved RP procedures. **RPDA Type II:** 1) Test mainline RP per normal approved procedures, Remember to isolate bypass before testing main assembly. 2) Test bypass single check valve using normal approved check #2 test procedures. # 3 Valve Test Procedure for Double Check Valve Assembly (DCVA) (Pressure Differential) | PREPERATION | Test #1: TIGHTNESS OF # 2 SHUT OF VALVE | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | □ 1. Notify the customer □ 2. Inspect the area for safety □ 3. Determine if the assembly is Approved & Appropriate □ 4. Record Make, Model #, Serial # and on test report form | □ 1. Open TC # 4 □ 2. Close TC # 2 - Pause to Allow Gauge to Readjust □ 3. Read the Gauge & Record(Example: Tight) *If the Pressure Differential Gauge Remains Steady, Record the #2 Shut Off Valve as Tight. | | FLUSHING OF TEST COCKS | Test #2 TIGHTNESS OF #1 CHECK | | □ 1. Place Test Adapters on Test Cocks (If Applicable) □ 2. Open TC # 1, Bleed, then Close □ 3. Open TC # 2, Bleed, then Close □ 4. Open TC # 3, Bleed, then Close □ 5. Open TC # 4, Bleed, then Close □ 6. Close High & Low control valves □ 7. Leave Open Vent/Bypass valve □ 8. Turn off Shut Off Valve # 2 on assembly | □ 1. Close TC # 4 □ 2. Close High Valve □ 3. Remove Vent/Bypass Hose from TC #4 □ 4. Open TC # 2 □ 5. (Reset) Open Low Side Control Valve to Cause Differential Reading to Rise – Then Close □ 6. Read the Gauge & Record Value ○ Pressure Differential Gauge Reading should be 1 PSID or Above. | | ATTACHING THE TEST KIT | Test #3 TIGHTNESS OF # 2 CHECK | | □ 1. Attach High Side Hose to TC # 2 □ 2. Attach Low Side Hose to TC # 3 □ 3. Open TC # 2 □ 4. Open High Side Control Valve, Bleed Air, Then Close □ 5. Open TC # 3 □ 6. Open Low Side Control Valve, Bleed Air, Then Close □ 7. Attach Vent/Bypass Hose to TC # 4 □ 8. Open Low Control Side Valve □ 9. Loosen By-Pass Hose at TC # 4 to Bleed Air, Then Tighten □ 10. Close Low Control Valve □ 11. Open High Control Valve □ 12. Record Static Working Pressure (If Required) | □ 1. Close TC # 2 □ 2. Close TC # 3 □ 3. Remove Low Side Hose from TC # 3 and place it on TC # 4 □ 4. Remove High Side Hose from TC # 2 and Place it on TC # 3 □ 5. Open TC # 3 □ 6. Open High Side Bleed Valve – Bleed Air, Then Close □ 7. Open TC # 4 □ 8. Open Low Side Bleed Valve – Bleed Air, Then Close □ 9. Read the Gauge & Record Value A) If the Pressure Differential Gauge Reading Should be 1 PSID or Above. | | | RESTORE SYSTEM 1. Close All Test Cocks 2. Remove Hoses 3. Open All Valves on the Test Kit and Drain Water 4. Restore Water to building by Opening # 2 Shut Off Valve | <u>Detector Assemblies:</u> To verify flow through the bypass, open test cock #4 and the meter should move. DCDA Type I: 1) Test main assembly as normal using approved DCVA procedures. Remember to isolate the bypass before testing main assembly. 2) Test bypass assembly separately using approved DCVA procedures. **DCDA Type II:** 1) Test mainline DCVA as normal using approved DCVA procedures, remember to isolate bypass before testing main assembly. 2) Test bypass single check valve using normal approved check #2 test procedures. # 3-Valve Test Procedure for a Double Check Valve Assembly (DCVA) (Direction of Flow) | PREPARATION | TEST #2: CHECK VALVE #2 | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | □ Notify customer □ Inspect the area for safety □ Determine if the assembly is Approved & Appropriate □ Record Make, Model, Serial #, Size & Type □ Install test adaptor fittings (if required) □ Flush TC # 1, 2, 3, 4 □ Open High & Low control valves and Bypass valve on gauge *Attach High Hose Only on Gauge* | Move vertical tube from TC #3 to TC #4* Move high hose from TC #2 to TC #3 Open TC #3 slowly Open high control valve then close high control valve Open TC #4 to fill vertical tube Close TC #4 Close #1 shut-off valve Open TC #4 Record value of check valve #2 (1.0 psid or > to pass) | | TEST #1: CHECK VALVE #1 | RECORD SHUT-OFF VALVES | | □ Install vertical tube on TC #3 * □ Install High hose on TC #2 □ Close Low control valve □ Open TC #2 slowly □ Close High control valve when air stops □ Open TC #3 to fill vertical tube, then close □ Close shut-off valve #2 □ Record supply pressure (if required) □ Close #1 shut-off valve □ Center gauge with top of vertical tube □ Open TC #3 □ Record value of check valve #1 (1.0 psid. or > to pass) □ Close TC #2 and TC #3 □ Open #1 shut-off valve | □ Record shut-off valve #1 & #2 ○ (closed tight or leaking) RESTORE SYSTEM □ Close TC #3 & #4 □ remove all hoses □ Open shut-off valve #1 □ Open shut-off valve #2 | <u>Detector Assemblies:</u> To verify flow through the bypass, open test cock #4 and the meter should move. DCDA Type I: 1) Test main assembly as normal using approved DCVA procedures. Remember to isolate the bypass before testing main assembly. 2) Test bypass assembly separately using approved DCVA procedures. **DCDA Type II:** 1) Test mainline DCVA as normal using approved DCVA procedures, remember to isolate bypass before testing main assembly. 2) Test bypass single check valve using normal approved check #2 test procedures. ^{*} OK to use test cocks as long as gauge can be centered on Test Cocks # 3-Valve Test Procedure for a Pressure Vacuum Breaker Assembly (PVB) (Direction of Flow) | PREPERATION | TEST #2 - CHECK VALVE VALUE | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | □ 1. Notify the customer □ 2. Inspect the area for safety □ 3. Determine if the assembly is Approved & Appropriate □ 4. Record Make, Model #, Serial # and Static Working Pressure on test report form □ 5. Close All Valves on Test Gauge □ 6. Remove Canopy and Clean Debris Around Air Inlet □ 7. Flush TC#1 □ 8. Flush TC#2 □ 19. Turn Off The # 2 Shut off Valve | □ Attach High Side Hose to TC #1 □ <u>SLOWLY</u> Open TC # 1 □ Bleed Air, Then Close Vent/Bypass Valve □ Turn Off The # 1 Shut off Valve □ With the Gauge Centerline at Elevation of PVB □ <u>SLOWLY</u> Open TC # 2 Fully and Record PSID Value When Water Stops Flowing from TC #2 □ Close Both Test Cocks and Remove hose | | *Attach High Hose Only on Gauge* TEST #1: AIR INLET OPENING | RESTORE SYSTEM | | □ 1. Attach high hose to TC #2 □ 2. SLOWLY - Open TC #2 □ 3. Open High Side Control Valve □ 4. Open Vent/Bypass Valve, Bleed Air □ 5. Close Vent/Bypass valve □ 6. Turn Off The # 1 Shut off Valve □ 7. Center Gauge to PVB | ☐ 1. Open Shut off Valve #1 First☐ 2. Open Shut off Valve #2 |